Получите определение периода в химии и узнайте, какое значение имеют периоды в периодической таблице элементов. Период — строка периодической системы химических элементов, последовательность атомов по возрастанию заряда ядра и заполнению электронами внешней электронной оболочки. Создание периодической системы химических элементов является результатом многовекового опыта и наблюдений исследователей со всего мира.
Что такое период в химии?
Существует несколько вариантов ПСХЭ, так называемый короткий и длинный вариант. Длинный формат вмещает 18 групп, нумерация осуществляется арабскими цифрами I, II…XVIII, Если посмотреть на таблицу, то видим закономерность, так как абсолютно каждый период будет начинаться активным металлом и заканчиваться инертным газом. Такая периодичность сохраняется 7 раз. В периоде с ростом атомной массы металлические свойства уменьшаются, неметаллические — увеличиваются. Вертикальные столбцы образуют группы. Это условно компании, где собираются единомышленники. Точнее, располагаются элементы, подобные по своим свойствам. Обратите внимание, что подобие характерно только в пределах подгруппы. Так, натрий и медь принадлежат одной I группе, но располагаются в разных подгруппах.
Натрий — элемент главной подгруппы, медь — побочной. Именно по этой причине они будут иметь разные физические и химические свойства. В пределах группы с ростом атомной массы металлические свойства увеличиваются, неметаллические — уменьшаются. Таким образом, периодическую систему можно условно назвать домом химических элементов, где каждый из них занимает своё определённое место порядковый номер согласно его свойствам. Рассмотрим подробнее на примере 2 и 3 периода. Что показывает сравнение: оба периода начинаются с активных металлов Li и Na, для которых характерно существование в виде соединений, в свободном виде могут находиться только под слоем керосина. Они относятся к группе щелочных металлов. Анализируя схему, мы видим, что первые три группы образованны металлами.
Но из-за их количества они вынесены за пределы системы. Периодический закон Д. Менделеев записал в виде периодического закона. Благодаря периодическому закону, зная расположение элемента в периодической системе, мы можем прогнозировать свойства веществ. Элементы входят в состав как простых, так и сложных веществ, влияя при этом на их свойства. Обобщить данные тезисы можно в виде таблицы. Таблица 1. При взаимодействии с водой образуют щёлочь.
Эти характеристики их объединяют. Теперь рассмотрим отличия. Вам уже известно, что в пределах группы с ростом атомной массы металлические свойства увеличиваются.
Хотя бывает непросто понять ее принципы, умение работать с ней поможет при изучении естественных наук. Для начала изучите структуру таблицы и то, какую информацию можно узнать из нее о каждом химическом элементе.
Затем можно приступить к изучению свойств каждого элемента. И наконец, с помощью таблицы Менделеева можно определить число нейтронов в атоме того или иного химического элемента. Шаги Часть 1 Структура таблицы Таблица Менделеева, или периодическая система химических элементов, начинается в левом верхнем углу и заканчивается в конце последней строки таблицы в нижнем правом углу. Элементы в таблице расположены слева направо в порядке возрастания их атомного номера. Атомный номер показывает, сколько протонов содержится в одном атоме.
Кроме того, с увеличением атомного номера возрастает и атомная масса. Таким образом, по расположению того или иного элемента в таблице Менделеева можно определить его атомную массу. Как видно, каждый следующий элемент содержит на один протон больше, чем предшествующий ему элемент. Это очевидно, если посмотреть на атомные номера. Атомные номера возрастают на один при движении слева направо.
Поскольку элементы расположены по группам, некоторые ячейки таблицы остаются пустыми. Например, первая строка таблицы содержит водород, который имеет атомный номер 1, и гелий с атомным номером 2. Однако они расположены на противоположных краях, так как принадлежат к разным группам. Узнайте о группах, которые включают в себя элементы со схожими физическими и химическими свойствами. Элементы каждой группы располагаются в соответствующей вертикальной колонке.
Как правило, они обозначаются одним цветом, что помогает определить элементы со схожими физическими и химическими свойствами и предсказать их поведение. Все элементы той или иной группы имеют одинаковое число электронов на внешней оболочке. Водород можно отнести как к группе щелочных металлов, так и к группе галогенов. В некоторых таблицах его указывают в обеих группах. В большинстве случаев группы пронумерованы от 1 до 18, и номера ставятся вверху или внизу таблицы.
Номера могут быть указаны римскими например, IA или арабскими например,1A или 1 цифрами. При движении вдоль колонки сверху вниз говорят, что вы «просматриваете группу». Узнайте, почему в таблице присутствуют пустые ячейки. Элементы упорядочены не только в соответствии с их атомным номером, но и по группам элементы одной группы обладают схожими физическими и химическими свойствами. Благодаря этому можно легче понять, как ведет себя тот или иной элемент.
Однако с ростом атомного номера не всегда находятся элементы, которые попадают в соответствующую группу, поэтому в таблице встречаются пустые ячейки. Например, первые 3 строки имеют пустые ячейки, поскольку переходные металлы встречаются лишь с атомного номера 21. Элементы с атомными номерами с 57 по 102 относятся к редкоземельным элементам, и обычно их выносят в отдельную подгруппу в нижнем правом углу таблицы. Каждая строка таблицы представляет собой период. Все элементы одного периода имеют одинаковое число атомных орбиталей, на которых расположены электроны в атомах.
Количество орбиталей соответствует номеру периода. Таблица содержит 7 строк, то есть 7 периодов. Например, атомы элементов первого периода имеют одну орбиталь, а атомы элементов седьмого периода - 7 орбиталей. Как правило, периоды обозначаются цифрами от 1 до 7 слева таблицы. При движении вдоль строки слева направо говорят, что вы «просматриваете период».
Научитесь различать металлы, металлоиды и неметаллы. Вы лучше будете понимать свойства того или иного элемента, если сможете определить, к какому типу он относится. Для удобства в большинстве таблиц металлы, металлоиды и неметаллы обозначаются разными цветами. Металлы находятся в левой, а неметаллы - в правой части таблицы. Металлоиды расположены между ними.
Часть 2 Обозначения элементов Каждый элемент обозначается одной или двумя латинскими буквами. Как правило, символ элемента приведен крупными буквами в центре соответствующей ячейки. Символ представляет собой сокращенное название элемента, которое совпадает в большинстве языков.
Кроме того, в малых периодах слева направо валентность в соединениях с кислородом возрастает от 1 до 7 например, от Na до Cl. В больших периодах вначале валентность возрастает от 1 до 8 например, в пятом периоде от рубидия к рутению , затем происходит резкий скачок, и валентность уменьшается до 1 у серебра, потом снова возрастает. Группы - вертикальные столбцы элементов с одинаковым числом валентных электронов, равным номеру группы. Различают главные А и побочные подгруппы Б. Главные подгруппы состоят из элементов малых и больших периодов.
Побочные подгруппы состоят из элементов только больших периодов. В главных подгруппах сверху вниз металлические свойства усиливаются, а неметаллические ослабевают.
Что такое период в химии: пример Рассмотрим 4-й период, к которому относятся элементы от калия K до криптона Kr. В начале периода расположены типичные металлы - K, Ca. Далее идут переходные металлы - Sc, Ti и т. В конце периода находятся типичные неметаллы - As, Se и благородный газ Kr.
Как устроена Периодическая система: периоды и группы Помимо периодов, в Периодической таблице выделяются также группы - вертикальные столбцы, объединяющие химические элементы по общим свойствам: Щелочные металлы - 1-я группа.
Порядок реакции
2. Период – химические элементы, расположенные в строчку (периодов всего 7). Период определяет количество энергетических уровней в атоме. Статья рассказывает об одном из основных понятий химии — периоде, описывая его значение, связь с таблицей Менделеева и особенности периодической системы элементов. Период в химии — это горизонтальная строка в таблице Менделеева, представляющая собой упорядоченный набор химических элементов. Ведь его Периодическая таблица химических элементов грубо не верна в окончаниях всех периодов! Химический период является важной концепцией в химии, поскольку элементы в одном периоде обычно имеют схожие свойства, связанные с их электронной конфигурацией.
Изменение свойств химических элементов для ЕГЭ 2022
А применения пока нет, элементы с "острова стабильности" ещё не синтезированы, да и сам он не найден, но есть некоторые успехи. По предположению теоретиков, стабильным элементом должен будет стать элемент под номером 126. Могут ли образовываться тяжелые элементы в природе? Да, могут. А именно при вспышках сверх новых или при слиянии нейтронных звёзд, однако дальше урана он 92 в периодической таблице химических элементов дело не доходит, поэтому учёные создают их сами при помощи ускорителей. Задействуется так называемая реакция слияния.
Во втором периоде восемь элементов. С него началось заполнение третьего энергетического уровня. Электронная формула аргона: 1s22s22p6Зs23p6. Натрий - аналог лития, аргон - неона. В третьем периоде, как и во втором,восемь элементов. Его 19-й электрон занял 4s-подуровень, энергия которого ниже энергии Зd-подуровня. Внешний 4s-электрон придает элементу свойства, сходные со свойствами натрия. Поэтому электронное строение Sc соответствует формуле 1s22s22p63s23p63d14s2,а цинка - 1s22s22p63s23p63d104s2. В четвертом периоде 18 элементов. В пятом периоде как и в четвертом, 18 элементов. Поскольку у этих элементов заполняется глубинный 4f-подуровеиь третьего снаружи уровня, они обладают весьма близкими химическими свойствами. В шестом периоде 32 элемента. Седьмой период - незавершенный. Заполнение электронами электронных уровней аналогично шестому периоду. Актиноиды, как и лантаноиды, обладают многими сходными химическими свойствами. Хотя 3 d-подуровень заполняется после 4s-подуровня, в формуле он ставится раньше, так как последовательно записываются все подуровни данного уровня. В зависимости от того, какой подуровень последним заполняется электронами, все элементы делят на четыре типа семейства. К ним относятся первые два элемента каждого периода. Это последние 6 элементов каждого периода кроме первого и седьмого. К ним относятся элементы вставных декад больших периодов,расположенных между s- и р-элементами их также называют переходными элементами. Это лантаноиды и актиноиды. В периодической системе s-элементов 14, р-элементов 30, d-элементов 35, f-элементов 28. Элементы одного типа имеют ряд общих химических свойств.
Зарядовое число равно заряду ядра в единицах элементарного заряда и одновременно равно порядковому номеру соответствующего ядру химического элемента в таблице Менделеева. Группа периодической системы химических элементов — последовательность атомов по возрастанию заряда ядра, обладающих однотипным электронным строением. Номер группы определяется количеством электронов на внешней оболочке атома валентных электронов и, как правило, соответствует высшей валентности атома. В короткопериодном варианте периодической системы, группы подразделяются на подгруппы — главные или подгруппы A , начинающиеся с элементов первого и второго периодов, и побочные подгруппы В , содержащие d-элементы. Подгруппы также имеют названия по элементу с наименьшим зарядом ядра как правило, по элементу второго периода для главных подгрупп и элементу четвёртого периода для побочных подгрупп.
Это объясняется тем, что с каждым новым периодом количество электронов в атомах и их заряд возрастает, что делает эти электроны более удерживаемыми атомом. Эти и другие свойства элементов изменяются вдоль периодов, что помогает установить закономерности и узнать больше о химических свойствах веществ. Выводы о значимости периода в химии Период в химии — это важное понятие, определяющее расположение элементов в таблице химических элементов по их атомным номерам. Отдельные периоды образуют ряды элементов, которые имеют схожие свойства и химическую активность. Выводы о значимости периода в химии: Упорядочение элементов. Периодическая таблица химических элементов позволяет упорядочить все известные элементы в порядке возрастания их атомных номеров. Это позволяет исследователям и химикам систематизировать информацию об элементах и легко находить нужные данные. Определение химических свойств. Периодическая таблица позволяет делать выводы о химических свойствах элементов, в зависимости от их расположения в периоде. Блоки s, p, d, f определяют, в каких подуровнях находятся электроны в атомах элементов, что влияет на их химическую активность и связывание с другими атомами. Предсказание химических свойств. Периодическая таблица позволяет предсказывать химические свойства еще неизвестных элементов на основе уже известных данных. Расположение элементов в таблице позволяет сделать предположения о их электронной конфигурации и связывающей способности. Построение структурных моделей. Периодическая таблица является основой для построения структурных моделей химических соединений. Зная расположение элементов в таблице, можно определить атомы, которые могут образовать связи, и предсказать структуру молекулы или кристалла. Проведение химических экспериментов. Зная расположение элементов в периодической таблице, ученые могут проводить эксперименты, основываясь на знании и предсказаниях о свойствах элементов. Это позволяет создавать новые соединения, материалы и разрабатывать новые технологии.
ТАБЛИЦА МЕНДЕЛЕЕВА - периодическая система химических элементов
Смотреть что такое «Период периодической системы» в других словарях: Четвёртый период периодической системы — К четвёртому периоду периодической системы относятся элементы четвёртой строки (или четвёртого периода) периодической системы химических элементов. Рассмотрим подробнее что такое период и что такое группа в периодической таблице Менделеева. Давайте рассмотрим, как изменяются свойства химических элементов в группах и в периодах. ряд горизонтально расположенных химических элементов. 1, 2 и 3 периоды называются малыми, они состоят из одного ряда элементов.
Теория электролитической диссоциации
Естествознание. 10 класс | Неон – инертный газ, который не вступает в химические реакции, следовательно, его электронная оболочка очень устойчива. |
Что такое период химия. Что такое период в химии — domino22 | Характеристика натрия по положению в Периодической системе химических элементов. |
Периодическая система химических элементов: как это работает | Длинные периоды в химии представляют собой один из видов периодов периодической системы химических элементов. |
Что такое период химия. Что такое период в химии — domino22 | 2. Период – химические элементы, расположенные в строчку (периодов всего 7). Период определяет количество энергетических уровней в атоме. |
Периодическая система химических элементов Д.И. Менделеева. Видеоурок 26.2. Химия 8 класс | Итак, мы разобрались, что такое диссоциация в химии, а сейчас повторим ключевые моменты. |
Порядок реакции
Что Такое В Химии Период | Периодическая система имеет семь периодов. Первый период, содержащий 2 элемента, а также второй и третий, насчитывающие по 8. |
ПЕРИОДИЧЕСКАЯ ТАБЛИЦА МЕНДЕЛЕЕВА | Правильный ответ на вопрос«Что означает Nn в химии (нулевой период) » по предмету Химия. |
Периодический закон | Хотя химические изменения были ускорены или замедлены изменением таких факторов, как температура, концентрация и т. д., эти факторы не влияют на период полураспада. |
Что такое период в периодической системе элементов? | Периодическая система химических элементов — это таблица, в которой все химические элементы расположены в порядке возрастания атомных номеров. |
Что такое "период" в периодической таблице элементов химии? | Период в периодической таблице-это ряд химических элементов. |
ЧТО ТАКОЕ В ХИМИИ ПЕРИОД
Однако только в 1869 году Дмитрий Иванович Менделеев, русский химик, решил систематизировать имеющуюся информацию и разработал периодическую систему химических элементов. Таблица Менделеева — так называлась система — быстро стала ключевым ориентиром для исследователей и химиков. Менделеев первым в истории открыл закон периодичности элементов. По его мнению, свойства элементов в периодической системе должны изменяться в зависимости от атомного веса, а соседние элементы, расположенные в соответствии с возрастающим атомным номером , демонстрируют некоторое сходство.
Это было прорывное открытие, которое произвело революцию в постоянно развивающейся науке под названием химия. Таблицу Менделеева можно найти практически в каждой школьной химической лаборатории, и ее знание является основой современных химических знаний. Итак, давайте узнаем, как читать таблицу Менделеева, чтобы извлечь из нее как можно больше информации?
Группа периодической системы химических элементов - последовательность атомов по возрастанию заряда ядра, обладающих однотипным электронным строением. В короткопериодном варианте периодической системы, группы подразделяются на подгруппы - главные или подгруппы A , начинающиеся с элементов первого и второго периодов, и побочные подгруппы В , содержащие d-элементы. Подгруппы также имеют названия по элементу с наименьшим зарядом ядра как правило, по элементу второго периода для главных подгрупп и элементу четвёртого периода для побочных подгрупп.
Элементы одной подгруппы обладают сходными химическими свойствами. Остальные периоды, имеющие 18 и более элементов большими. Седьмой период не завершн.
Заря 769;довое число 769; атомного ядра синонимы: атомный номер, атомное число, порядковый номер химического элемента количество протонов в атомном ядре. Группа периодической системы химических элементов последовательность атомов по возрастанию заряда ядра, обладающих однотипным электронным строением. Номер группы определяется количеством электронов на внешней оболочке атома валентных электронов и, как правило, соответствует высшей валентности атома.
В короткопериодном варианте периодической системы, группы подразделяются на подгруппы главные или подгруппы A , начинающиеся с элементов первого и второго периодов, и побочные подгруппы В , содержащие d-элементы. Подгруппы также имеют названия по элементу с наименьшим зарядом ядра как правило, по элементу второго периода для главных подгрупп и элементу четвртого периода для побочных подгрупп. С возрастанием заряда ядра у элементов одной группы из-за увеличения числа электронных оболочек увеличиваются атомные радиусы, вследствие чего происходит снижение электроотрицательности, усиление металлических и ослабление неметаллических свойств элементов, усиление восстановительных и ослабление окислительных свойств образуемых ими веществ.
Горизонтальные строки в табл. Менделеева Горезонтальна линия та шо злева табл. Менделева Эволюция периодической системы химических элементов Особым и важным для эволюции периодической системы химических элементов оказалось введённое Менделеевым представление о месте элемента в системе; положение элемента определяется номерами периода и группы.
Опираясь на это представление, Менделеев пришёл к выводу о необходимости изменения принятых тогда атомных весов некоторых элементов U, In, Ce и его аналогов , в чём состояло первое практическое применение П. Классическим примером является предсказание «экаалюминия» будущего Ga, открытого П. Лекоком де Буабодраном в 1875 , «экабора» Sc, открытого шведским учёным Л.
Нильсоном в 1879 и «экасилиция» Ge, открытого немецким учёным К. Винклером в 1886. Во многом представляла эмпирическое обобщение фактов, поскольку был неясен физический смысл периодического закона и отсутствовало объяснение причин периодического изменения свойств элементов в зависимости от возрастания атомных весов.
Так, неожиданным явилось открытие в конце 19 в. Открытие многих «радиоэлементов» в начале 20 в. Это противоречие было преодолено в результате открытия изотопов.
Наконец, величина атомного веса атомной массы как параметра, определяющего свойства элементов, постепенно утрачивала своё значение. Структура периодической системы химических элементов. Современная 1975 П.
За всю историю П. Наибольшее распространение получили три формы П. Длинную форму также разрабатывал Менделеев, а в усовершенствованном виде она была предложена в 1905 А.
Лестничная форма предложена английским учёным Т. Бейли 1882 , датским учёным Ю. Томсеном 1895 и усовершенствована Н.
Бором 1921. Каждая из трёх форм имеет достоинства и недостатки. Фундаментальным принципом построения П.
Каждая группа в свою очередь подразделяется на главную а и побочную б подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными химическими свойствами. Элементы а- и б-подгрупп в каждой группе, как правило, обнаруживают между собой определённое химическое сходство, главным образом в высших степенях окисления, которые, как правило, соответствуют номеру группы.
Периодом называется совокупность элементов, начинающаяся щелочным металлом и заканчивающаяся инертным газом особый случай - первый период ; каждый период содержит строго определённое число элементов. Первый период периодической системы элементов Специфика первого периода заключается в том, что он содержит всего 2 элемента: H и He. Место H в системе неоднозначно: водород проявляет свойства, общие со щелочными металлами и с галогенами, его помещают либо в Ia-, либо предпочтительнее в VIIa-подгруппу.
Гелий - первый представитель VIIa-подгруппы однако долгое время Не и все инертные газы объединяли в самостоятельную нулевую группу. Второй период периодической системы элементов Второй период Li - Ne содержит 8 элементов. Он начинается щелочным металлом Li, единственная степень окисления которого равна I.
Затем идёт Be - металл, степень окисления II. Металлический характер следующего элемента В выражен слабо степень окисления III. Идущий за ним C - типичный неметалл, может быть как положительно, так и отрицательно четырёхвалентным.
Последующие N, O, F и Ne - неметаллы, причём только у N высшая степень окисления V соответствует номеру группы; кислород лишь в редких случаях проявляет положительную валентность, а для F известна степень окисления VI. Завершает период инертный газ Ne. Третий период периодической системы элементов Третий период Na - Ar также содержит 8 элементов, характер изменения свойств которых во многом аналогичен наблюдающемуся во втором периоде.
Каждый элемент имеет свой порядковый атомный номер, располагается в определённом периоде и определённой группе. Период — горизонтальный ряд химических элементов, начинающийся щелочным металлом или водородом и заканчивающийся инертным благородным газом. В таблице семь периодов. Какие бывают периоды в химии? Периоды - это горизонтальные ряды таблицы, они подразделяются на малые и большие. В малых периодах находится 2 элемента 1-й период или 8 элементов 2-й, 3-й периоды , в больших периодах - 18 элементов 4-й, 5-й периоды или 32 элемента 6-й, 7-й период. Что такое группы и подгруппы в химии? В короткопериодном варианте периодической системы группы подразделяются на подгруппы — главные или подгруппы A , начинающиеся с элементов первого и второго периодов, и побочные подгруппы В , содержащие d-элементы. Сколько периодов и сколько групп в периодической системе элементов Менделеева? Современная форма Периодической системы химических элементов в 1989 году Международным союзом теоретической и прикладной химии рекомендована длинная форма таблицы состоит из семи периодов горизонтальных последовательностей элементов, расположенных по возрастанию порядкового номера и 18 групп вертикальных...
Как определить период в химии?
На длинных периодах находятся многие химические элементы, такие как литий, натрий, калий и др. Элементы, расположенные на одном длинном периоде, имеют сходные химические свойства и характеристики.
Длинные периоды имеют своего рода уровневую структуру, где каждая «электронная оболочка» соответствует отдельному уровню энергии электронов. По мере приближения к концу каждого длинного периода, энергия электронов увеличивается, что приводит к изменению химических свойств элементов. Изучение длинных периодов в химии является важной задачей, так как это помогает понять строение и свойства различных элементов, их реактивность и место в периодической системе.
Кроме того, знание длинных периодов позволяет установить закономерности и тренды в ряде химических процессов и реакций. Блоки периодов Периодическая система Д. Менделеева состоит из 7 периодов, которые разделены на блоки.
Каждый блок соответствует определенному типу элементов и обладает своими характеристиками. Блок s-элементов: первый и второй периоды периодической системы относятся к блоку s-элементов. В этом блоке располагаются элементы с заполненной электронной оболочкой s-орбитали.
Они характеризуются высокой химической реактивностью и образуют ионные соединения с элементами в блоках p и d. Блок p-элементов: третий и четвертый периоды относятся к блоку p-элементов. Здесь находятся элементы с заполненной электронной оболочкой p-орбитали.
Периодический закон
Это графическая формулировка периодического закона , открытого русским учёным Д. Менделеевым в 1869 году, который гласит, что свойства химических элементов проявляют периодическую зависимость от их атомного веса в современных терминах, от атомной массы. Первая периодическая таблица, получившая всеобщее признание, была разработана русским химиком Д. Менделеевым в 1869 и приведена к традиционному графическому виду в 1871 году.
В современном варианте системы предполагается сведение элементов в двумерную таблицу, которая разделена на четыре примерно прямоугольные области, называемые блоками. Строки таблицы называются периодами, а столбцы называются группами. Элементы из одной и той же группы столбцов периодической таблицы имеют сходные химические характеристики.
В 1829 году Иоганном Дёберейнером был опубликован «закон триад», который гласил, что атомная масса многих элементов приблизительно равна среднему арифметическому двух других элементов, близких к исходному элементу по химическим свойствам. Так например, хлор , бром и йод образовали триаду; также как кальций , стронций и барий ; литий , натрий и калий ; и сера , селен и теллур. В 1862 году Александр Эмиль Шанкуртуа решил расположить элементы в порядке возрастания атомных весов, разместив элементы на винтовой линии.
Он отметил частое циклическое повторение химических свойств по вертикали. Так был создана модель «Земная спираль». В 1864 году появилась таблица немецкого химика Юлиуса Лотара Мейера , разделенная на 6 столбцов, в которых располагались 28 элементов согласно их валентности.
В 1866 году английский химик и музыкант Джон Александр Ньюлендс описал «закон октав», сопоставив химические свойства элементов с их атомными массами. Расположив элементы в порядке возрастания их атомных масс, Ньюлендс заметил, что сходство в свойствах проявляется между каждым восьмым элементом, то есть как будто бы восьмой по порядку элемент повторяет свойства первого, как в музыке восьмая нота повторяет первую. Окончательный прорыв был сделан русским химиком Дмитрием Менделеевым.
Менделеев начал упорядочивать элементы и сравнивать их по их атомным весам. Он расставил элементы по девятнадцати горизонтальным рядам рядам сходных элементов, ставших прообразами периодов современной системы и по шести вертикальным столбцам прообразам будущих групп. Менделеев в своей таблице оставил несколько свободных мест и предсказал ряд фундаментальных свойств ещё не открытых элементов и само их существование, а также свойства их соединений экабор, экаалюминий, экасилиций, экамарганец — соответственно, скандий , галлий , германий , технеций.
Первая версия периодической системы химических элементов, созданная Д. Менделеевым в 1869 году.
Периоды в химии являются важным понятием, так как электронные оболочки и энергетические уровни элементов влияют на их свойства, вещественное состояние и реакционную активность. Определение и характеристики периода в химии Период в химии — это горизонтальная строка в периодической системе элементов, которая представляет собой организацию химических элементов по возрастанию их атомных номеров. Всего в периодической системе существует семь периодов.
Каждый период начинается с щелочного металла например, лития, натрия, калия и т. Всего в каждом периоде может быть различное количество элементов, которое определяется количеством энергетических уровней атома. Характеристики периода: Период определяет количество энергетических уровней атома элемента. Каждый следующий период добавляет один энергетический уровень. Атомы элементов в одном периоде имеют одинаковое количество электронных оболочек.
Атомные радиусы элементов увеличиваются по мере продвижения по периоду слева направо. Химические свойства элементов в периоде постепенно меняются от металлических свойств слева до неметаллических слева. Периодический закон предсказывает, что атомные свойства элементов повторяются через каждый период. Важно отметить, что периоды в периодической системе не являются равнозначными и имеют свои особенности в зависимости от энергетической структуры атомов элементов. Периоды вместе с группами образуют основу для классификации и организации элементов в периодической системе химических элементов.
Примеры периодов в периодической системе Периодическая система химических элементов включает в себя несколько периодов, которые обозначают различные электронные оболочки атомов элементов. Каждый период соответствует определенному количеству электронных оболочек, и каждая следующая оболочка содержит больше электронов по сравнению с предыдущей. Вот несколько примеров периодов: Период 1: Этот период содержит только два элемента — водород H и гелий He. Оба элемента имеют только одну электронную оболочку. Все элементы второго периода имеют две электронные оболочки.
Все элементы этого периода имеют три электронные оболочки.
Уже в начальной школе на уроках химии мы узнаем, что в мире существуют разные элементы. Они содержатся в воздухе, пище, почве, воде и горных породах. Таким образом, можно сказать, что они окружают нас повсюду. Совокупность всех открытых к настоящему времени элементов известна как периодическая система. Что такое периодическая система элементов? Что такое чтение информации из периодической системы? Ответы на эти вопросы вы найдете в данной статье.
Элементы с атомными номерами с 57 по 102 относятся к редкоземельным элементам, и обычно их выносят в отдельную подгруппу в нижнем правом углу таблицы. Каждая строка таблицы представляет собой период. Все элементы одного периода имеют одинаковое число атомных орбиталей, на которых расположены электроны в атомах. Количество орбиталей соответствует номеру периода. Таблица содержит 7 строк, то есть 7 периодов. Например, атомы элементов первого периода имеют одну орбиталь, а атомы элементов седьмого периода - 7 орбиталей. Как правило, периоды обозначаются цифрами от 1 до 7 слева таблицы. При движении вдоль строки слева направо говорят, что вы «просматриваете период». Научитесь различать металлы, металлоиды и неметаллы. Вы лучше будете понимать свойства того или иного элемента, если сможете определить, к какому типу он относится. Для удобства в большинстве таблиц металлы, металлоиды и неметаллы обозначаются разными цветами. Металлы находятся в левой, а неметаллы - в правой части таблицы. Металлоиды расположены между ними. Часть 2 Обозначения элементов Каждый элемент обозначается одной или двумя латинскими буквами. Как правило, символ элемента приведен крупными буквами в центре соответствующей ячейки. Символ представляет собой сокращенное название элемента, которое совпадает в большинстве языков. При проведении экспериментов и работе с химическими уравнениями обычно используются символы элементов, поэтому полезно помнить их. Обычно символы элементов являются сокращением их латинского названия, хотя для некоторых, особенно недавно открытых элементов , они получены из общепринятого названия. К примеру, гелий обозначается символом He, что близко к общепринятому названию в большинстве языков. В то же время железо обозначается как Fe, что является сокращением его латинского названия. Обратите внимание на полное название элемента, если оно приведено в таблице. Это «имя» элемента используется в обычных текстах. Например, «гелий» и «углерод» являются названиями элементов. Обычно, хотя и не всегда, полные названия элементов указываются под их химическим символом. Иногда в таблице не указываются названия элементов и приводятся лишь их химические символы. Найдите атомный номер. Обычно атомный номер элемента расположен вверху соответствующей ячейки, посередине или в углу. Он может также находиться под символом или названием элемента. Элементы имеют атомные номера от 1 до 118. Атомный номер всегда является целым числом. Помните о том, что атомный номер соответствует числу протонов в атоме. Все атомы того или иного элемента содержат одинаковое количество протонов. В отличие от электронов, количество протонов в атомах элемента остается постоянным. В противном случае получился бы другой химический элемент! По атомному номеру элемента можно также определить количество электронов и нейтронов в атоме. Обычно количество электронов равно числу протонов. Исключением является тот случай, когда атом ионизирован. Протоны имеют положительный, а электроны - отрицательный заряд. Поскольку атомы обычно нейтральны, они содержат одинаковое количество электронов и протонов. Тем не менее, атом может захватывать электроны или терять их, и в этом случае он ионизируется. Ионы имеют электрический заряд. Если в ионе больше протонов, то он обладает положительным зарядом, и в этом случае после символа элемента ставится знак «плюс». Если ион содержит больше электронов, он имеет отрицательный заряд, что обозначается знаком «минус». Знаки «плюс» и «минус» не ставятся, если атом не является ионом. Период - строка периодической системы химических элементов, последовательность атомов по возрастанию заряда ядра и заполнению электронами внешней электронной оболочки.
Период в химии
Период — строка периодической системы химических элементов, последовательность атомов по возрастанию заряда ядра и заполнению электронами внешней электронной оболочки. Закономерности изменения химических свойств элементов и их соединений по периодам и группам. Периодическая таблица химических элементов устроена довольно необычно, поэтому понять, что такое период в химии сразу непросто даже для профессионалов.
Что означает Nn в химии (нулевой период)?
Таблица содержит 7 строк, то есть 7 периодов. Например, атомы элементов первого периода имеют одну орбиталь, а атомы элементов седьмого периода - 7 орбиталей. Как правило, периоды обозначаются цифрами от 1 до 7 слева таблицы. При движении вдоль строки слева направо говорят, что вы «просматриваете период». Научитесь различать металлы, металлоиды и неметаллы. Вы лучше будете понимать свойства того или иного элемента, если сможете определить, к какому типу он относится. Для удобства в большинстве таблиц металлы, металлоиды и неметаллы обозначаются разными цветами. Металлы находятся в левой, а неметаллы - в правой части таблицы. Металлоиды расположены между ними.
Часть 2 Обозначения элементов Каждый элемент обозначается одной или двумя латинскими буквами. Как правило, символ элемента приведен крупными буквами в центре соответствующей ячейки. Символ представляет собой сокращенное название элемента, которое совпадает в большинстве языков. При проведении экспериментов и работе с химическими уравнениями обычно используются символы элементов, поэтому полезно помнить их. Обычно символы элементов являются сокращением их латинского названия, хотя для некоторых, особенно недавно открытых элементов, они получены из общепринятого названия. К примеру, гелий обозначается символом He, что близко к общепринятому названию в большинстве языков. В то же время железо обозначается как Fe, что является сокращением его латинского названия. Обратите внимание на полное название элемента, если оно приведено в таблице.
Это «имя» элемента используется в обычных текстах. Например, «гелий» и «углерод» являются названиями элементов. Обычно, хотя и не всегда, полные названия элементов указываются под их химическим символом. Иногда в таблице не указываются названия элементов и приводятся лишь их химические символы. Найдите атомный номер. Обычно атомный номер элемента расположен вверху соответствующей ячейки, посередине или в углу. Он может также находиться под символом или названием элемента. Элементы имеют атомные номера от 1 до 118.
Атомный номер всегда является целым числом. Помните о том, что атомный номер соответствует числу протонов в атоме.
Шестой период периодической системы элементов Шестой период Cs — Rn включает 32 элемента. В нём помимо 10 d-элементов La, Hf — Hg содержится совокупность из 14 f-элементов, лантаноидов, от Ce до Lu символы чёрного цвета. Элементы от La до Lu химически весьма сходны. В короткой форме П. Этот приём несколько неудобен, поскольку 14 элементов оказываются как бы вне таблицы. Подобного недостатка лишены длинная и лестничная формы П. Особенности периода: 1 в триаде Os — Ir — Pt только осмий проявляет степень окисления VIII; 2 At имеет более выраженный по сравнению с 1 металлический характер; 3 Rn, по-видимому его химия мало изучена , должен быть наиболее реакционноспособным из инертных газов.
Следующие 14 элементов, f-элементы с Z от 90 до 103 , составляют семейство актиноидов. В связи с этим в химическом отношении ряды лантаноидов и актиноидов обнаруживают заметные различия. Вертикальными чертами разделены периоды П. Под обозначениями подоболочек проставлены значения главного n и орбитального l квантовых чисел, характеризующие последовательно заполняющиеся подоболочки. Из вышеприведённой схемы легко определяются ёмкости последовательных периодов: 2, 8, 8, 18, 18, 32, 32… Каждый период начинается элементом, в атоме которого появляется электрон с новым значением n. Первый — третий периоды П. Особый случай представляют собой элементы первого периода H и He. Высокая химическая активность атомарного водорода объясняется лёгкостью отщепления единственного ls-электрона, тогда как конфигурация атома гелия 1s2 является весьма прочной, что обусловливает его химическую инертность. Поскольку у элементов а-подгрупп происходит заполнение внешних электронных оболочек с n, равным номеру периода , то свойства элементов заметно меняются по мере роста Z.
Так, во втором периоде Li конфигурация 2s1 — химически активный металл, легко теряющий валентный электрон, a Be 2s2 — также металл, но менее активный. Металлический характер следующего элемента B 2s2p выражен слабо, а все последующие элементы второго периода, у которых происходит застройка 2р-подоболочки, являются уже неметаллами. Восьмиэлектронная конфигурация внешней электронной оболочки Ne 2s2p6 чрезвычайно прочна, поэтому неон — инертный газ. Аналогичный характер изменения свойств наблюдается у элементов третьего периода и у s-и р-элементов всех последующих периодов, однако ослабление прочности связи внешних электронов с ядром в а-подгруппах по мере роста Z определённым образом сказывается на их свойствах. Так, у s-элементов отмечается заметный рост химической активности, а у р-элементов — нарастание металлических свойств. В VIIIa-подгруппе ослабляется устойчивость конфигурации ns2np6, вследствие чего уже Kr четвёртый период приобретает способность вступать в химические соединения. Специфика р-элементов 4—6-го периодов связана также с тем, что они отделены от s-элементов совокупностями элементов, в атомах которых происходит застройка предшествующих электронных оболочек. У переходных d-элементов б-подгрупп достраиваются незавершённые оболочки с n, на единицу меньшим номера периода. Конфигурация внешних оболочек у них, как правило, ns2.
Поэтому все d-элементы являются металлами. Аналогичная структура внешней оболочки d-элементов в каждом периоде приводит к тому, что изменение свойств d-элементов по мере роста Z не является резким и чёткое различие обнаруживается лишь в высших степенях окисления, в которых d-элементы проявляют определённое сходство с р-элементами соответствующих групп П. Специфика элементов VIIIб-подгруппы объясняется тем, что их d-подоболочки близки к завершению, в связи с чем эти элементы не склонны за исключением Ru и Os проявлять высшие степени окисления. У элементов Iб-подгруппы Cu, Ag, Au d-подоболочка фактически оказывается завершенной, но ещё недостаточно стабилизированной, эти элементы проявляют и более высокие степени окисления до III в случае Au. В атомах лантаноидов и актиноидов происходит достройка ранее незавершённых f-подоболочек с n, на 2 единицы меньшим номера периода; конфигурация внешние оболочки сохраняется неизменной ns2 ; f-электроны у лантаноидов не оказывают существенного влияния на химические свойства. Лантаноиды проявляют преимущественно степень окисления III за счёт двух 6s-электронов и одного d-электрона, появляющегося в атоме La ; однако такое объяснение не является достаточно удовлетворительным, так как 5d-электрон содержится только в атомах La, Ce, Gd и Lu; поэтому считается, что в др. Оценка химических свойств К и и элемента 105 позволяет считать, что в этой области П. Cходство электронных конфигураций свободных атомов коррелирует с подобием химического поведения соответствующих элементов. Задача строгого количественного объяснения всей специфики проявляемых химическими элементами свойств и периодичности этих свойств оказывается чрезвычайно сложной, поэтому нельзя утверждать, что создана количественная теория П.
Отдельные аспекты такой теории разрабатываются в русле современных методов квантовой механики см. Квантовая химия, Валентность. Верхняя граница П. Вопрос о пределе искусственного синтеза элементов также пока не решен. Ядерная химия. Это даёт основания рассчитывать на осуществление синтеза таких элементов. Оценка электронных конфигураций и важнейших свойств неизвестных элементов седьмого периода показывает, что эти элементы, по-видимому, должны быть аналогами соответствующих элементов шестого периода. Напротив, для восьмого периода состоящего, согласно теории, из 50 элементов предсказывается весьма сложный характер изменения химических свойств по мере роста Z, связанный с резким нарушением последовательности заполнения электронных подоболочек в атомах. Литературные источники: — Менделеев Д.
Основные статьи, М. Закон Менделеева, М. История и теория, М. Менделеева, М. Открытия и хронология, М. Сборник статей, М. Доклады на пленарных заседаниях, М. A history of the first hundred years, Amst. Периодическая система химических элементов Менделеева Классификация хим.
Санкт-Петербург, ул. Швецова, д.
Менделеев сформулировал свой закон периодичного изменения свойств химических элементов и образованных ими соединений исходя из массы атомов.
Позже после установления строения атома закон был сформулирован в следующей формулировке актуальной и в настоящий момент. Свойства атомов химических элементов и образованных ими простых веществ находятся в периодической зависимости от зарядов ядер их атомов. Графическим изображением периодического закона Д.
Менделеева можно считать периодическую таблицу химических элементов, впервые построенную самим великим химиком, но несколько усовершенствованную и доработанную последующими исследователями. Фактически используемый в настоящее время вариант таблицы Д. Менделеева отражает современные представления и конкретные знания о строении атомов разных химических элементов.
Рассмотрим более детально современный вариант периодической системы химических элементов: В таблице Д. Менделеева можно видеть строки, называемые периодами; всего их насчитывается семь. Фактически номер периода отражает число энергетических уровней, на которых расположены электроны в атоме химического элемента.
Например, такие элементы, как фосфор, сера и хлор, обозначаемые символами P, S, и Cl, находятся в третьем периоде. Это говорит о том, что электроны в этих атомах расположены на трех энергетических уровнях или, если говорить более упрощенно, образуют трехслойную электронную оболочку вокруг ядер. Каждый период таблицы, кроме первого, начинается щелочным металлом и заканчивается благородным инертным газом.
Все щелочные металлы имеют электронную конфигурацию внешнего электронного слоя ns1, а благородные газы — ns2np6, где n — номер периода, в котором находится конкретный элемент.
Читайте также: Что такое или кто-что такой толлер Может кто расскажет что-кто такое такой толлер Свойства периода Период в химии — это горизонтальная строка в таблице элементов, на которой расположены элементы с одинаковым количеством электронных оболочек. Свойства периода определяются электронной конфигурацией и положением элементов в таблице. Важнейшие свойства периода: Размер атомов: В периоде размер атомов обратно пропорционален их атомному номеру — чем выше номер, тем меньше размер атома. Это объясняется увеличением ядерного заряда и притяжением электронов к ядру, что сжимает электронные оболочки. Электроотрицательность: Градиент электроотрицательности, то есть способность атомов притягивать электроны, возрастает по периоду с левого к правому краю таблицы. Это связано с увеличением эффективного ядерного заряда и сокращением размера атомов. Энергия ионизации: Энергия, необходимая для отщепления электрона от атома, увеличивается по периоду слева направо. Это объясняется увеличением ядерного заряда и сокращением размера атомов, что затрудняет удаление электрона. Металлические свойства: Слева от периодической системы находятся металлы, а справа — неметаллы.
По мере перехода от металлов к неметаллам по периоду, металлические свойства уменьшаются, а неметаллические — увеличиваются. Температура плавления и кипения: В пределах периода температура плавления и кипения элементов обычно увеличивается слева направо. Связано это с увеличением электроотрицательности и энергии ионизации элементов. Исключением в свойствах периода являются элементы группы инертных газов группа 18 , которые по своим свойствам мало зависят от положения в периоде. Химическая активность Период в химии имеет прямое отношение к химической активности элементов. Химическая активность определяется способностью элемента образовывать химические соединения. Периодическая система химических элементов включает в себя семь периодов, где каждый период соответствует электронной оболочке атома.