САМЫЙ ЛЕГКИЙ СПОСОБ решения ЗАДАНИЯ №26 ЕГЭ по Информатике! 9 задание егэ информатика, какие то проблемы. Информатика. ЕГЭ. Задания для подготовки. Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников. Особенности решения задач 25 и 26 компьютерного ЕГЭ по информатике.
ЕГЭ по информатике
В контексте статьи понятно, о чем идет речь. Но при разборе статьи с учениками лучше уточнить: дерево возможных вариантов игры при выбранной стратегии Вани. Обычно деревом возможных вариантов игры или просто деревом игры называют дерево, изображающее все возможные партии. То есть, рассматриваются все возможные ходы Вани, а не только ходы, соответствующие определенной стратегии. Задача C3-2013 объединяет идеи задач C3-2011 и C3-2012. Преемственность с C3-2012 видна из разбора К. Итак, начнём с того, что попытаемся понять условие. У нас есть две кучки камней и два игрока: первый Петя и второй Ваня. Игроки ходят по очереди. За ход в любую из кучек можно либо добавить один камень, либо увеличить количество камней в кучке в два раза.
Как только суммарно в кучке стало 73 или более камня, игра заканчивается. Тот, кто ходил последним, выиграл. Важные замечания Мы будем в некоторых заданиях строить дерево партий. Мы это обязаны делать согласно условию только в Задании 3. В Задании 2 мы не обязаны строить дерево партий. В каждом из заданий недостаточно просто сказать, кто имеет выигрышную стратегию. Требуется также описать её и указать возможное количество шагов, которое потребуется для выигрыша. Недостаточно назвать стратегию выигрышной. Нужно доказать , что она приводит к выигрышу.
Даже очевидные утверждения требуют доказательств. Задание 1. Рассмотрим теперь Задание 1. В кучках — 6, 33 камней первая часть Задания 1 и 8, 32 камней вторая часть Задания 1. Нам нужно определить, у кого из игроков имеется выигрышная стратегия. Иными словами, кто из игроков при правильной игре обязательно выиграет вне зависимости от действий соперника. Здесь и далее мы будем решение разбивать на две части. Вначале будет идти предварительное объяснение его писать в ЕГЭ не нужно , а затем — "формальное решение", то есть то, что нужно писать в самом бланке ЕГЭ. Давайте подумаем: первый игрок очевидно в один ход выиграть не может, так как что бы он не делал, суммарно 73 не будет.
Самое "большое" действие, которое он может сделать, — это увеличить в 2 раза количество камней во второй кучке, сделав их 66. Но 6, 66 — это 72 камня, а не 73. Значит, первый в один ход явно выиграть не сможет. Однако второй — вполне сможет. Первый может сделать потенциально четыре действия: прибавить 1 к первой кучке, увеличить в 2 раза количество камней в первой кучке, прибавить 1 ко второй кучке, увеличить в 2 раза количество камней во второй кучке. В этом случае второй игрок может увеличить в 2 раза количество камней во второй кучке. Получим 7, 66. Суммарно — 73. Значит, второй выигрывает.
Получим 12, 66. Суммарно — 78. Получим 6, 68. Суммарно — 74. Получим 6, 132. Суммарно — 138. Итого: как бы себя не вёл первый игрок, второй выиграет и в один ход. Аналогично решается и с 8,32. Формальное решение Задания 1.
Второй игрок имеет выигрышную стратегию. Докажем это и покажем эту стратегию. Для этого построим дерево партии для каждой из начальных позиции. В дереве партий мы будем указывать состояние обеих кучек в формате a,b , где a — количество камней в первой кучке, b — количество камней во второй кучке. При ходе первого игрока мы будем рассматривать четыре возможных варианта его поведения: прибавить 1 к первой кучке, увеличить в 2 раза количество камней в первой кучке, прибавить 1 ко второй кучке, увеличить в 2 раза количество камней во второй кучке. Для второго игрока мы укажем по одному ходу, приводящему к выигрышу. Ходы будем показывать в виде стрелочек, рядом с которыми писать I в случае хода первого и II в случае хода второго.
Директор института информационных технологий Московского государственного технологического университета «Станкин», кандидат технических наук, член комиссии разработчиков контрольных измерительных материалов ЕГЭ по информатике Сергей Сосенушкин напомнил, что компьютерный формат экзамена дает возможность выпускникам использовать широкий спектр инструментов, которые не были им доступны ранее, и выполнить задания максимально эффективно. Он рассказал о типичных ошибках, которые приводят к снижению баллов. Вынужденные ошибки связаны с уровнем подготовки: кто-то решает задачи лучше, кто-то справляется с ними хуже. Причиной невынужденных ошибок чаще всего оказывается обидная невнимательность в чтении условия, додумывание формулировок и вопросов. Это приводит к потере баллов даже у самых подготовленных школьников», — прокомментировал Сергей Сосенушкин.
Известно, какой объём занимает файл каждого пользователя. По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей , чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей. Входные данные находятся в файле.
Теперь из-за больших величин аргументов стоит опираться в первую очередь на аналитическое мышление. А также понимать, что именно считает функция. Задание не вызовет серьезных проблем, если ребенок разбирается в программировании. Для решения нужно знать, как записывать логические выражения на языке программирования, а также понимать структуру циклов перебора и алгоритма ветвления. Вторая категория — «числовые отрезки». Основную трудность вызывает применение законов алгебры логики для упрощения выражений. Ученики либо не видят способ применения того или иного закона, либо просто забывают о них. Поэтому в этом задании нужно как можно больше практики. Третий тип — «координатная плоскость».
26 задание егэ информатика 2021 excel скидки
Задания 26, 27 позволяют набрать по 2 первичных балла каждый. На уроке рассмотрен разбор 26 задания ЕГЭ по информатике: дается подробное объяснение и решение задания 2017 года. Открытый банк заданий ЕГЭ. obzege.
Егэ информатика 26. Баллы за задания по информатике
Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника. Задание 1 а Укажите такие значения числа S, при которых Петя может выиграть в один ход.
Опишите выигрышную стратегию Вани. Задание 2 Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причем: — Петя не может выиграть за один ход; — Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети. Задание 3 Укажите значение S, при котором: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии в виде рисунка или таблицы.
Если сократить её описание, отбросив пояснения и примеры, получим следующие правила. Два игрока, Петя и Ваня, играют в следующую игру.
Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч по своему выбору один камень или увеличить количество камней в куче в два раза. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 77. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, при которой в кучах будет 77 или больше камней. Задание 20 ЕГЭ Информатика: решение.
Если начальная позиция 20; 39 , то после первого хода Коли может получиться одна из четырёх позиций: 22; 39 всего 61, 40; 39 всего 79, 20; 41 всего 61, 20; 78 всего 98. Для каждой из полученных позиций Саша, удвоив число камней во второй куче, получит соответственно позиции 22; 78 , 40; 78 , 20; 82 , 20; 156. Если начальными являются позиции 10; 42 , 8; 44 , 20; 37 , то выигрывает Коля своим вторым ходом. Если начальной является одна из позиций 10; 42 или 8; 44 , то, чтобы выиграть, Коля должен после своего хода получить позицию 10; 44. Для этого он должен увеличить на 2 число камней либо во второй куче для позиции 10; 42 , либо в первой для позиции 8; 44. Считая позицию 10; 44 начальной, мы приходим к рассмотрению ситуации задания 1. Как уже было показано выше, в этом случае выигрывает тот, кто ходит вторым. Значит, выиграет Коля своим вторым ходом. Если начальная позиция 20; 37 , то, чтобы выиграть, Коля должен увеличить во второй куче число камней на 2. Тогда после его хода получится позиция 20; 39. Считая эту позицию начальной, мы приходим к рассмотрению ситуации задания 1. Если начальной является позиция 8; 42 , то выигрывает Саша не более чем за два хода. После первого хода Коли из начальной позиции 8; 42 можно получить одну из следующих: 10; 42 , 16; 42 , 8; 44 , 8; 84. Если на начало хода Саши будет одна из позиций 10; 42 , 8; 44 , то он выиграет своим вторым ходом. Эти позиции были рассмотрены как начальные в задании 2.
Находим максимальное значение из трех тупиковых клеток. Это 1952. Получим: Ищем минимальное значение в тупиковых клетках. Это 1080. Ответ: 1952 1080 Задание 19. Выигрышная стратегия Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч два камня или увеличить количество камней в куче в два раза.
Информатика ЕГЭ 2021. Задание 26 в Excel. № 2650 с сайта Полякова
Официальный информационный портал единого государственного экзамена. В ЕГЭ по информатике 27 заданий разного уровня: и ряд из них требует особого подхода. 2024, ЕГЭ физика реальный вариант Задача 26 из досрочного 2023 года, САМЫЙ ЛЕГКИЙ СПОСОБ решения ЗАДАНИЯ №26 ЕГЭ по Информатике!
Задание 26. Обработка массива целых чисел
ЕГЭ по ИНФОРМАТИКЕ 2022 | Lancman School | Отмена. Воспроизвести. Информатика ЕГЭ Умскул. |
Задания №26 ЕГЭ по информатике - cпособ решения без использования программирования | Объяснение решения 26 задания ЕГЭ по информатике о программной обработке целочисленной информации с использованием сортировки. |
26 Задание | Excel | Информатика ЕГЭ | ЕГЭ. Информатика. 26 задание. 3 апреля 2023. Некоторые из способов решения заданий данного задания. |
Задание 26. ЕГЭ Информатика 2024. Разбор всех типов. Все коды решений в описании. | Решение Задач Егэ По Информатике В Excel, Артем Flash. |
Задание 26. Алгоритмы сортировки. Обработка целочисленной информации.. ЕГЭ 2024 по информатике
5 задание Информатика ЕГЭ | Разобраны все актуальные виды заданий 26 (100+ задач) и 27 (170+ задач). Дана вся необходимая теория. |
Особенности решения задач 25 и 26 компьютерного ЕГЭ по информатике — презентация | Разбор заданий с прошедшего ЕГЭ 2023. Задание 26 → Умение обрабатывать целочисленную информацию с использованием сортировки. |
Search code, repositories, users, issues, pull requests... | Примеры заданий: Задание 26 Простое задание (Решу ЕГЭ). |
Задание 26. ЕГЭ. Исправление ошибок в программе | Задание номер 26 ЕГЭ по информатике. Сколько баллов? Как делать задание? Теория. Шпаргалка. Практика. Разбор. Решение. Критерии оценивания. Баллы. |
2 способа решения задания 26 на ЕГЭ по информатике 2023 | insperia
ЕГЭ по информатике | Сегодняшний урок посвящн 26 заданию из егэ по информатике 2021. на нм мы будем тренировать умение обрабатывать целочисленную информацию с. |
ВСЕ ЗАДАЧИ 26 с официальных ЕГЭ | Информатика ЕГЭ 2023 | Умскул - Скачать видео | В варианте ЕГЭ-2024 две задачи по теории вероятностей — это №4 и №5. По заданию 5 в Интернете почти нет доступных материалов. |
Информатика. ЕГЭ 26 | Разбор 26 задания ЕГЭ 2017 года по информатике из демоверсии. |
Рубрика «ЕГЭ Задание 26»
9 задание егэ информатика, какие то проблемы. Задание 3 ЕГЭ Информатика ДЕМО-2022 (Базы данных. Главная» Новости» 13 задание егэ информатика 2024. Сегодняшний урок посвящн 26 заданию из егэ по информатике 2021. на нм мы будем тренировать умение обрабатывать целочисленную информацию с. Задание 3. Демоверсия ЕГЭ 2018 информатика (ФИПИ): На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах).
Search code, repositories, users, issues, pull requests...
Разбор 24 задания ЕГЭ по информатике демо 2021 и с сайта Полякова К. (21), на Pascal и PythonСкачать. Способ решения задания №26 ЕГЭ по информатике (без использования программирования) с помощью MS Excel. Задание 26 (ЕГЭ 2023 г.) Задание выполняется с использованием прилагаемых файлов. 01.05.2023ЕГЭ Задание 26АдминистраторКомментарии: 0. Инфоурок › Информатика ›Конспекты›Разбор задания №26 ЕГЭ (Информатика). Тренировочные тесты ЕГЭ-2020 по всем предметам для 11 класса от авторов «СтатГрада» и других экспертов.
Вы точно человек?
Однако максимальное заполнение архива будет при упаковки файлов 40 и 50. Итого: наибольшее число пользователей, чьи файлы могут быть помещены в архив, равно 2, а максимальный размер имеющегося файла, который может быть сохранён в архиве, равен 50. Реализация Для начала отсортируем список files методом sort: Заведём переменные scur, отвечающую за текущую сумму, и i, которая будет одновременно хранить и кол-во пользователей, чьи файлы могут быть помещены в архив. Теперь создадим список cand, где будут храниться файлы, которые можно поместить в архив. Просуммируем первые числа пока их сумма меньше общей суммы S и добавляем данные числа в cand. Если сумма превысит S, выходим из цикла.
В работе приводится алгоритм решения задания 26 ЕГЭ, а также листинг программы на языке Python. Условие задания Организация купила для своих сотрудников все места в нескольких подряд идущих рядах на концертной площадке. Известно, какие места уже распределены между сотрудниками. Найдите ряд с наибольшим номером, в котором есть два соседних места, таких что слева и справа от них в том же ряду места уже распределены заняты. Гарантируется, что есть хотя бы один ряд, удовлетворяющий условию.
В ответе запишите два целых числа: номер рядя и наименьший номер места из найденных в этом ряду подходящих пар. Работа со списком. Основы программирования. Входные данные задания 26 ЕГЭ В первой строке входного файла находится одно число: N — количество занятых мест натуральное число, не превышающее 10000. В следующих N строках находятся пары чисел: ряд и место выкупленного билета числа не превышают 100000.
В ответе запишите два целых числа: сначала максимальный номер ряда, где нашлись обозначенные в задаче места и минимальный номер места. Пример входного файла: Пример входных данных к заданию 26 ЕГЭ по информатике Для данного примера ответом будет являться пара чисел 60 и 23. Решение Согласно условию задачи нам следует найти самый большой номер ряда, в котором найдется 2 соседних незанятых места, что слева и справа от них будут 2 занятых места, что соответствует схеме занято — свободно — свободно — занято. Если мы нашли такой номер ряда, и оказалось, что таких схем в нем несколько, то нужно выбрать минимальный номер свободного места. Алгоритм решения задачи Читаем данные из файла в список списков.
Укажите два значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход, но может выиграть своим вторым ходом независимо от того, как будет ходить Вова. Для указанных значений S опишите выигрышную стратегию Паши. Укажите значение S, при котором у Вовы есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, однако у Вовы нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вовы. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вовы в виде рисунка или таблицы. На ребрах дерева указывайте, кто делает ход, в узлах - количество камней в куче. При меньших значениях S за один ход нельзя получить кучу, в которой больше 40 камней. Тогда после первого хода Паши в куче будет 31 камень или 40 камней.
Возможные значения S: 20, 29. Возможное значение S: 28. После первого хода Паши в куче будет 29 или 38 камней. Если в куче станет 38 камней, Вова увеличит количество камней на 10 и вы играет своим первым ходом. Ситуация, когда в куче 29 камней, разобрана в п. В таблице изображено дерево возможных партий при описанной стратегии Вовы. Заключительные позиции в них выигрывает Вова подчёркнуты. На рисунке это же дерево изображено в графическом виде оба способа изображения дерева допустимы.
Два иг-ро-ка, Петя и Ваня, иг-ра-ют в сле-ду-ю-щую игру. Перед ними лежат две кучки кам-ней, в пер-вой из ко-то-рых 2, а во вто-рой - 3 камня. У каж-до-го иг-ро-ка не-огра-ни-чен-но много кам-ней. Иг-ро-ки ходят по оче-ре-ди, пер-вый ход де-ла-ет Петя. Ход со-сто-ит в том, что игрок или утра-и-ва-ет число кам-ней в какой-то куче, или до-бав-ля-ет 4 камня в какую-то кучу. Игра за-вер-ша-ет-ся в тот мо-мент, когда общее число кам-ней в двух кучах ста-но-вит-ся не менее 31. Если в мо-мент за-вер-ше-ния игры общее число кам-ней в двух кучах не менее 40, то вы-иг-рал Петя, в про-тив-ном слу-чае - Ваня. Кто вы-иг-ры-ва-ет при без-оши-боч-ной игре обоих иг-ро-ков?
Каким дол-жен быть пер-вый ход вы-иг-ры-ва-ю-ще-го иг-ро-ка? Ответ обос-нуй-те. Выигрывает Ваня. Для доказательства рассмотрим неполное дерево игры, оформленное в виде таблицы, где в каждой ячейке записаны пары чисел, разделённые запятой. Эти числа соответствуют количеству камней на каждом этапе игры в первой и второй кучах соответственно. Таблица содержит все возможные варианты ходов первого игрока. Из неё видно, что при любом ходе первого игрока у второго имеется ход, приводящий к победе. Два игрока, Петя и Вася, играют в следующую игру.
Перед ними лежат две кучки камней, в первой из которых 2, а во второй - 1 камень. У каждого игрока неограниченно много камней. Игроки ходят по очереди, первым ходит Петя. Ход состоит в том, что игрок или увеличивает в 3 раза число камней в какой-то куче, или добавляет 3 камня в какую-то кучу. Выигрывает игрок, после хода которого в одной из куч становится не менее 24 камней. Кто выигрывает при безошибочной игре? Каким должен быть первый ход выигрывающего игрока? Ответ обоснуйте.
Выигрывает Петя, своим первым ходом он должен увеличить в 3 раза количество камней во второй куче. Для доказательства рассмотрим неполное дерево игры, оформленное в виде таблицы, где в каждой ячейке записаны пары чисел, разделенные запятой. Таблица содержит все возможные варианты ходов Васи. Из неё видно, что при любом его ответе у Пети имеется ход, приводящий к победе. Два игрока, Петя и Ваня, играют в следующую игру. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в пять раз. Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 50 камней. Игра завершается в тот момент, когда количество камней в куче становится более 100.
Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 101 или больше камней. Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите все такие значения и выигрывающий ход Пети. Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Укажите такое значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани. Представьте его в виде рисунка или таблицы. Для каждого ребра дерева укажите, кто делает ход, для каждого узла - количество камней в позиции.
При меньших значениях S за один ход нельзя получить кучу, в которой больше 100 камней. Пете достаточно увеличить количество камней в 5 раз. Тогда после первого хода Пети в куче будет 21 камень или 100 камней. В обоих случаях Ваня увеличивает количество камней в 5 раз и выигрывает в один ход. Возможные значения S: 4, 19. После первого хода Пети в куче будет 19 или 90 камней. Если в куче станет 90 камней, Ваня увеличит количество камней в 5 раз и выиграет своим первым ходом. В таблице изображено дерево возможных партий при описанной стратегии Вани.
Заключительные позиции в них выигрывает Ваня подчёркнуты.
В первом случае воспользуемся двумя вложенными циклами for for x in range 16 : for y in range 9,16 : Для решения второго пункта воспользуемся множеством. Прекрасным свойством множества является то, что если туда попадают одинаковые элементы - остаётся толь один. Программа перебор всевозможных x и y из их области определения for x in range 16 :.
По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей. Входные данные находятся в файле.