Читала где-то, что человеческий глаз может видеть от 24 до 30 кадров в секунду. Биологический факт в том, что человеческий глаз видит мир с частотой выше 24 fps. В заключение, можно сказать, что вопрос о том, сколько кадров в секунду видит человеческий глаз, не имеет однозначного ответа. Это сложный вопрос, потому что человеческий глаз на самом деле не видит в «кадрах в секунду», а глаза у всех разные.
Сколько кадров в секунду (FPS) может видеть человеческий глаз
Дело не только в частоте кадров. Задержка ввода это время, которое проходит между вводом команды, ее интерпретацией игрой и передачей на монитор, а также обработкой и выводом изображения на монитор. Слишком большая задержка ввода приведет к тому, что любая игра будет казаться вялой, независимо от частоты обновления ЖК-дисплея. Но игра, запрограммированная на частоту 60 кадров в секунду, потенциально может отображать вводимые данные быстрее, поскольку кадры представляют собой более узкие временные отрезки 16,6 мс по сравнению с 30 кадрами в секунду 33,3 мс. Время реакции человека, конечно, не такое быстрое, но наша способность к обучению и прогнозированию прогнозировать может заставить наши реакции казаться намного быстрее. Важно то, что Шопен говорит о получении мозгом визуальной информации, которую он может обработать и на основе которой может действовать. Он не говорит о том, что мы не можем заметить разницу между кадрами с частотой 20 и 60 Гц. Таким образом, существует разница между эффективностью и опытом.
И хотя Бьюзи и ДеЛонг признают эстетическую привлекательность плавной частоты кадров, ни один из них не считает, что частота кадров — это абсолютная ценность игровой технологии, как, возможно, считаем мы. По мнению Шопена, разрешение гораздо важнее. Для ДеЛонга разрешение также важно, но только для небольшой центральной области глаза, которая составляет всего пару градусов поля зрения. Почему бы нам не сделать полное разрешение только для тех участков глаза, где оно действительно необходимо? Что мы знаем на самом деле Что же мы знаем после всего этого? Что мозг устроен очень сложно и что нет универсального ответа, который был бы применим ко всем. Некоторые люди могут воспринимать мерцание в источнике света с частотой 50 или 60 Гц.
Более высокая частота обновления уменьшает ощутимое мерцание. Мы лучше воспринимаем движение на периферии зрения. То, как мы воспринимаем вспышку изображения, отличается от того, как мы воспринимаем постоянное движение. Геймеры, скорее всего, обладают наиболее чувствительными и натренированными глазами, когда речь идет о восприятии изменений в изображении. То, что мы можем воспринимать разницу между частотами кадров, вовсе не означает, что это восприятие влияет на время нашей реакции. Таким образом, это не совсем чистая тема, и, кроме того, необходимо учитывать, действительно ли наши мониторы способны выводить изображение с такой высокой частотой кадров. Многие из них не поднимаются выше 60 Гц, а Бьюзи сомневается, что мониторы, рекламируемые с частотой 120 Гц, действительно отображают изображение с такой скоростью согласно результатам серьезного глубокого тестирования, проведенного на TFTCentral, это действительно так.
И как человек, которому доводилось играть и при 30 кадрах в секунду а зачастую и меньше , выдаваемых моими консолями, я могу отнестись к их предположению о том, что другие аспекты визуальных дисплеев могут лучше соответствовать моему зрительному восприятию. С другой стороны, мне бы хотелось услышать от профессиональных команд об их объективном опыте работы с частотой кадров и о том, как она влияет на производительность игроков. Возможно, они подтвердят или опровергнут современные представления науки в этой области. Если геймеры такие особенные, когда речь идет о зрении, то, возможно, именно мы должны стать инициаторами нового понимания этого явления.
Для примера взгляните на эту картинку. Очевидно, что здесь всего 1 кадр, однако мозг воспринимает сигналы получаемые от палочек с периферии зрения и трактует их как признаки движения, это позволяет ему самому «дорисовывать» кадры и делать плавное движение всего из 1 кадра.
Современные мониторы еще не достигли таких размеров, что бы покрывать все поле зрения человека. И это накладывает определенные ограничения на степень реалистичности картинки. Разработчики видеоигр понимают это и поэтому придумали добавлять по краям экрана эффект размытия, этот эффект позволяет мозгу воспринимать происходящее на экране более реалистично. Соответственно для обеспечения нужного уровня реалистичности хватает меньшего FPS. Выводы Принимая во внимание чрезвычайную сложность постобработки сигналов человеческим мозгом, указать точное значение фпс, воспринимаемое нами, с точностью до единицы попросту невозможно. Можно оттолкнуться только от физического предела восприятия в 20 мс, что равнозначно 50 FPS.
В тоже время учитывать, что края монитора захватываются частью периферийного зрения, где чувствительность рецепторов выше, но как мы поняли в этой области изображения разработчики игр научились обманывать зрительную систему. В итоге рациональным является остановиться на 60 FPS взяв 10 FPS про запас для просмотра видеоряда в котором нет эффекта размытия по краям. Передовая технология 3D-Vision, поддерживающая 120 Гц то есть по 60 Гц на глаз Несмотря на это повышенная частота способна действительно улучшить восприятие картинки. Почему так происходит и почему это никак не связано с FPS, который воспринимает человеческий глаз, вы можете узнать ответ дальше. Восприятие картинки на мониторах 120 Гц лучше? В интернете в последнее время стала очень популярна тема о 120 Гц мониторах.
Часто в этих темах озвучивается идея о том, что на 120 Гц мониторах изображение выглядит лучше даже без 3D-очков. Действительно ли человек способен заметить разницу?
Считается, что скорость частоты смены кадров в глазах у этих насекомых во много раз превосходит человеческие показатели. Так, частота смены изображений у мух составляет около 300 кадров минуту, в то время как у человека этот показатель равен всего лишь 24 кадрам.
Канадский музей насекомых Victoria Bug Zoo разработал необычную концепцию стенда, который позволяет прохожим взглянуть на мир глазами насекомых Уникальная зрительная система мухи обладает приблизительно 3,5 тысячами мелких шестигранных фасеток, каждая из которых способна улавливать лишь самую мизерную деталь изображения. Благодаря такому устройству глаза, муха способна мгновенно ориентироваться в пространстве, что, по сути, и делает ее столь неуловимой для запущенного тапка. Как выглядит самый мощный фотоаппарат в мире? Самой мощной фотокамерой в мире по праву признана камера на 3,2 гигапикселя , которая была разработана в рамках строительства Большого Синоптического Исследовательского Телескопа в Чили.
Разработчики считают, что начало эксплуатации самой мощной фотокамеры в мире произойдет уже совсем скоро — в 2022 году. Гигантский фотоаппарат весит приблизительно 3 тонны, при этом имея размеры небольшого автомобиля. Согласно расчетам, активная эксплуатация телескопа будет происходить в течение 10 лет, во время которых фотокамера телескопа будет делать около 800 снимков неба в высочайшем разрешении.
До 60 fps: исследование наглядно показало возможности человеческого глаза06. Поэтому режиссеры придерживаются «золотого стандарта», тем самым делая кино фантазийным, чтобы люди, наоборот, могли отвлечься от реальности. В опыте участвовало 88 человек: им предложили наблюдать за LED-источником освещения в специальных очках, способных мигать с разной скоростью.
Сколько кадров в секунду может видеть человеческий глаз?
Что будет, если сигнал обновляется с частотой выше половины частоты колебаний? По мере движения глаза, он будет регистрировать больше деталей, используя эту информацию для создания подробной картинки мира. Будет даже лучше при добавлении "зерна" предпочтительно через временной антиалиасинг для заполнения пробелов. Половина от 83. Таким образом, для получения высококачественного разрешения из картинки, она должна быть "шумной" подобно зерну пленки и обновляться с частотой выше 41 Гц.
Пример — фильм "Хоббит" в 48 fps, или "Гемини" в 60 fps. То же касается и видеоигр. Что же будет с частотой 24 или 30 кадров в секунду, ведь это ниже лимита? Глаза будут анализировать изображение дважды и не смогут собрать дополнительную информацию благодаря колебаниям.
Кино или игра получиться более "сказочным", не таким детальным. Ограниченным разрешением самого формата. Существуют теории, что это может быть связано с размытием движений, однако в случае кино эффект не должен играть большой роли. Что все это значит для кино?
При частоте обновления в 48-60 кадров в секунду наши глаза различают больше деталей, чем при частоте 24-30 fps, как в отношении движения, так и в детализации. Однако мы получим более чем в 2 раза больше информации, потому что помимо окружающей информации мозг регистрирует и движения. Поэтому экшеновые сцены с резкой сменой кадров более высокая частота будет иметь лучшие результаты среди аудитории. Однако аудитория будет регистрировать и больше деталей из сцены, чем при 24-30 fps.
Это и создает эффект постановки. Мы видим не образ, а сцену целиком, что едва ли возможно в реальности. В качестве наглядной демонстрации вы можете прямо сейчас провести эксперимент. Для этого необходимо на смартфоне открыть съемку видео и в настройках выбрать частоту — 60 fps.
Смотрите на экран и подвигайте перед собой камеру, получается гораздо плавнее, чем если просто подвигать головой. В итоге для получения кинематографического качества, необходимо снимать с частотой ниже 41 Гц, но выше частоты, когда движение становится рваным — от 16 Гц. А почему старые сериалы выглядели фальшиво? Это было связано с технологиями вещания прошлого века в NTSC-регионах, когда видео показывали с частотой 59.
Снимки будут в любом случае отвратительного качества. Но почему же тогда картинка, которую мы видим, настолько чёткая? Всё дело в том, что большая часть колбочек цветных светочувствительных «пикселей» собрана в крохотной ямке по центру сетчатки. Здесь же полностью отсутствуют палочки «пиксели», воспринимающие только яркость. Фактически, «матрица» нашего глаза, фиксирующая максимально четкое цветное изображение, выглядит вот так: Согласитесь, теперь уже смартфон кажется куда более серьёзным и качественным инструментом на фоне этого незначительного кусочка сетчатки. И только в этом месте изображение на сетчатке максимально резкое. Вся остальная картинка очень размыта и чем дальше от этого центрального кусочка, тем плачевнее ситуация. Естественно, это справедливо именно для одного «снимка». Если вы захотите проверить эту информацию и посмотреть чуточку левее, то уже в этой точке будет максимальная резкость, а участок правее окажется смазанным. Просто ваших глаза сфокусируют новую область изображения на центральную ямку.
Но и это еще не все! Точно такая же технология используется и в «матрице» нашего глаза. Только там объединяются не 4 или 9 «пикселей» в одну нервную клетку, а десятки, сотни и даже тысячи палочек и колбочек! Если брать в среднем, то можно считать, что «пиксели» глаза объединяются по 100 штук. И здесь, в отличие от смартфона, мы имеем дело с реальным физическим объединением сигнала. Считывается только общий сигнал всей группы как одна точка. Просто у нас физически только около миллиона «проводков», выходящих из глаза и идущих в мозг. На смартфоне же каждый пиксель подключен отдельным проводом и мы считываем по отдельности каждый из 108 миллионов пикселей, даже если собраны в группы и накрыты одним цветным фильтром. А объединение сигнала происходит уже после его считывания. Таким образом: Реальное разрешение глаза приближается к цифре в 1.
А это уровень кнопочного телефона 15 летней давности… И практически вся эта детализация уходит на крошечный «центр кадра», так как именно в центральной ямке колбочки не объединяются в группы, чтобы картинка оставалась максимально четкой. Дыра в матрице! Казалось бы, что еще можно придумать, чтобы испортить матрицу глаза? Может добавить «мертвые зоны» на матрицу? Так и есть! Примерно по центру каждого глаза, недалеко от главного резкого участка центральной ямки , находится место, куда выходят все «провода» аксоны от наших пикселей и одним общим «кабелем» оптический нерв идут в мозг: В этом месте нет никаких светочувствительных элементов и поэтому «слепые пятна» находятся прямо у нас перед глазами. В этот момент огромный черный кружок слева просто исчезнет, так как он попадет прямо на слепое пятно: Естественно, вы не должны никуда переводить взгляд, иначе глаз снова проделает свой трюк — сфокусирует эту область в центральную ямку. Можно поступить еще проще. Вытяните левую руку вперед и посмотрите левым глазом на свой большой палец, выставленный вверх. Теперь не отводя взгляд в сторону, медленно отводите руку в лево и в какой-то момент где-то левее на 20 см от центральной точки большой палец просто исчезнет, попав в «слепую зону».
Эти слепые пятна на глазах присутствуют постоянно, но когда мы смотрим двумя глазами — правый глаз добавляет картинку в слепое пятно слева и наоборот. А когда смотрим только одним глазом, мозг пытается как-то незаметно зарисовать пятно чем угодно, например, цветом, окружающим слепое пятно. Не забывайте, что сетчатку глаза нужно как-то питать, а значит на ней должны быть сосуды. Эти сосуды действительно есть, и они отбрасывают тень на «фотографию». Но мы не видим эти тени, так как мозг к ним уже давно привык и понял, что их нужно не показывать сознанию, а зарисовывать, как в фотошопе. Думаю, теперь вы готовы увидеть пример снимка, который выдает 1. Если вы ожидали увидеть качество хотя бы на уровне кнопочной Nokia 15-летней давности, то всё еще хуже: Конечно, это лишь наглядный пример, сделанный на компьютере, но он хорошо передает основной смысл. Мы видим маленькую четкую область по центру, слепое черное пятно справа, тени, отбрасываемые сосудами. И крайне низкое качество 1. Да и цвета по краям практически отсутствуют, так как там мало колбочек и много палочек.
Единственный нюанс — здесь не показан нос, который постоянно присутствует в кадре и мешает просмотру, но мозг его «вытирает» на снимках. А еще забавный факт заключается в том, что мобильные телефоны уже давно перешли на технологию BSI, суть которой заключается в том, что вся обвязка пикселей провода размещается позади светочувствительных элементов. То есть, ничего не препятствует движению света: Новые слева и старые справа пиксели Но глаз был разработан гораздо раньше появления технологии BSI. Поэтому здесь светочувствительные элементы находятся в самом низу, за несколькими слоями проводов нервов и других клеток по большей части прозрачных : И прежде, чем мы поймем почему же вопреки всему этому мы видим окружающий мир так хорошо, давайте еще сравним производительность матриц при плохом освещении. Матрица смартфона против сетчатки при плохом освещении Когда света становится очень мало, каждый фотон на счету!
Причем женщины более склонны к данному феномену. Блогер создал приставку с самым маленьким экраном в мире — всего 6 мм в ширину.
История про 24 кадра берёт начало в кинематографе, где видео с частотой 24 FPS считается эталоном, при котором картинка воспринимается максимально естественно. Впрочем, в современном кино экшн-сцены уже давно показывают с частотой 60 кадров в секунду и выше. Однако к возможностям человеческого глаза это не имеет никакого отношения — в отдельных ситуациях наш глаз способен видеть 400 и более кадров в секунду.
Сколько кадров видит человеческий глаз
Короткий ответ заключается в том, что вы, возможно, не в состоянии сознательно регистрировать эти кадры, но ваши глаза и мозг могут осознавать их. Например, возьмем скорость 60 кадров в секунду, которую многие приняли за верхний предел. Некоторые исследования показывают, что ваш мозг действительно может идентифицировать изображения, которые вы видите, в течение гораздо более короткого периода времени, чем думали эксперты. Например, авторы исследования Массачусетского технологического института, проведенного в 2014 году, обнаружили, что мозг может обрабатывать изображение, которое видит ваш глаз, всего за 13 миллисекунд — очень высокая скорость обработки. Это особенно быстро по сравнению с общепринятыми 100 миллисекундами, которые использовались в более ранних исследованиях. Тринадцать миллисекунд переводятся примерно в 75 кадров в секунду. Есть ли тест FPS для человеческого глаза? Некоторые исследователи показывают человеку быстрые последовательности изображений и просят ответить, чтобы увидеть, что они смогли обнаружить. Это то, что сделали исследователи в исследовании 2014 года, чтобы определить, что мозг может обрабатывать изображение, которое ваш глаз видел только в течение 13 миллисекунд.
Офтальмолог может изучить движения внутри вашего глаза, известные как внутриглазные движения, с помощью высокоскоростной кинематографии, чтобы узнать больше о том, насколько быстро работают ваши глаза. В наши дни смартфоны даже могут записывать эти тонкие движения с помощью замедленного видео. Эта технология позволяет телефону записывать больше изображений за меньшее время. По мере развития технологий эксперты могут продолжать разрабатывать новые способы измерения того, что способен видеть глаз. Чем наше зрение отличается от зрения животных Возможно, вы слышали, как люди утверждают, что животные видят лучше, чем люди. Оказывается, на самом деле это не так — острота зрения человека на самом деле лучше, чем у многих животных, особенно мелких.
Причём рисуется сначала одна половина кадра, а потом, через строку, другая. Это уменьшает заметность мерцания. Каждый из 24 "изначальных" кадров показывают два или даже три раза, чтобы уменьшить мерцание. У цифровой проекции частоты при показе могут быть еще выше. Так что картинка, которую в итоге видит зритель, достаточно плавная. Другое дело, что движение снятое с большей частотой кадров выглядит совсем...
Это предел, после которого дополнительные кадры не воспринимаются человеческим глазом и не приносят заметного улучшения в качестве восприятия изображения. Однако стоит отметить, что способность воспринимать кадры с более высокой частотой может быть индивидуальной и зависеть от разных факторов, таких как возраст и зрение человека, освещение, тип контента и т. Например, в киноиндустрии применяется технология «высококадрового кино» HFR — high frame rate , которая предполагает использование кадровой частоты 48 или 60 FPS. Некоторые люди заявляют, что HFR позволяет создать более глубокое и реалистичное восприятие изображения. Также стоит учитывать, что некоторым людям может быть неприятное ощущение от просмотра видео с высокой частотой кадров, так как это может выглядеть слишком реалистично или вызывать дискомфорт. В заключение можно сказать, что человеческий глаз способен воспринимать около 60 кадров в секунду, но это количество может варьироваться и зависеть от индивидуальных особенностей каждого человека. Как работает восприятие движения человека В основе восприятия движения лежит способность нашего зрительного аппарата обрабатывать последовательные серии изображений. Глаз состоит из ряда специализированных клеток, называемых фоторецепторами, которые реагируют на свет и отправляют сигналы в мозг для обработки. Фоторецепторы расположены по всей сетчатке глаза. Когда объект движется, фоторецепторы глаза регистрируют серию изображений в короткие промежутки времени. Эти изображения передаются в мозг, который совмещает и анализирует полученную информацию. В результате, мы воспринимаем движущийся объект. Скорость восприятия движения зависит от нескольких факторов, включая частоту обновления изображений кадров в секунду и чувствительность фоторецепторов глаза. Обычно говорят, что человеческий глаз способен воспринимать около 24 кадров в секунду. Однако, некоторые исследования показали, что люди могут воспринимать различия в движении даже при скорости до 60 кадров в секунду.
На самом деле ваш мозг в целом гораздо точнее, чем его отдельная часть ». Есть много исследований, которые подтверждают, что у геймеров зрение и восприятие намного выше среднего, поскольку мы потратили годы на «тренировку» своих глаз. Игры уникальны, они являются одним из немногих способов значительно улучшить почти все аспекты зрения, поэтому контрастная чувствительность, навыки внимания и одновременное отслеживание нескольких объектов намного лучше. Этот метод настолько хорош, что, по сути, для зрительной терапии используются игры. Итак, прежде чем кто-то рассердится на исследователей, которые говорят о скорости FPS, которую может видеть человеческий глаз, мы должны иметь в виду, что исследования показывают, что у геймеров есть зрение, уровень внимания и способность отслеживать движущиеся объекты намного лучше, чем « человек, не являющийся геймером. Восприятие движения Теперь перейдем к некоторым числам. Первое, о чем следует подумать, — это частота мерцания изображений: большинство людей воспринимают мерцающий источник света как постоянное освещение со скоростью от 50 до 60 раз в секунду, или герц. Вот почему почти все люди воспринимают монитор 60 Гц как постоянное изображение, а не как мерцающий свет , что и есть на самом деле. Но это лишь часть головоломки, когда дело доходит до восприятия плавных образов в игре. Это потому, что игры генерируют движущиеся изображения и, следовательно, вызывают различные визуальные системы, которые просто обрабатывают свет. Пример можно найти в так называемом законе Блоха. Этот закон гласит, что существует компромисс между интенсивностью и продолжительностью вспышки света, которая длится менее 100 мс. Он может иметь невероятно яркую наносекунду света и будет выглядеть так же, как десятая часть секунды тусклого света. Как правило, люди не могут различить слабые, короткие, яркие и длинные раздражители в течение десятых долей секунды. Но хотя человеческому глазу трудно различать световые вспышки длительностью менее 10 мс, мы можем воспринимать артефакты и движения невероятно быстро. Это будет зависеть от того, как воспринимаются различные формы движения: если вы сидите неподвижно и начинаете наблюдать, как вещи движутся перед вами, вы будете воспринимать это намного лучше, чем если бы вы делали это во время ходьбы, поскольку стимулы Они разные. Также стоит подумать о некоторых вещах, которые мы делаем во время игры; например, в игре типа «шутер» мы постоянно отслеживаем взаимосвязь между движением мыши и взглядом в петле восприятия двигательной обратной связи. Другими словами, когда мы перемещаем мышь, зрение уже знает, что экран будет двигаться, что позволяет нам быстрее реагировать. Поэтому во время игры мы постоянно обновляем представление об игровом мире с помощью визуальной информации. Эксперты говорят, что мы увидим гораздо более плавную игру, когда у нас будет восприятие движения в большом масштабе, а не в определенной точке; Другими словами, когда мы играем, глядя на весь экран в целом, у нас будет лучшее ощущение плавности, чем если бы мы указывали на определенную часть экрана. Вопрос на миллион долларов, верно? С этим не согласны даже эксперты, и вот что они говорят о том, сколько FPS видит человеческий глаз: «Конечно, 60 Гц лучше, чем 30 Гц, явно лучше, и это утверждение, которое мы уже давно слышим от производителей оборудования. Поскольку мы можем воспринимать движение с более высокой скоростью, чем мерцающий источник света с частотой 60 Гц, уровень должен быть выше, но я не думаю, что он остается на определенном уровне. Я не знаю, 120 Гц это или 180 Гц. Проще говоря, точка, в которой люди замечают изменение плавности движущихся изображений, составляет около 90 Гц. Очевидно, это для обычного человека, поскольку, как мы уже говорили ранее, геймеры лучше воспринимают эти изменения ». Иосифа в Ренсселере. Итак, в конце концов, вот какие выводы мы можем сделать: У геймеров лучше визуальное восприятие и лучшие рефлексы. Более высокие частоты уменьшают мерцание. Если мы видим монитор с частотой 60 Гц как сплошное изображение, это означает, что человеческий глаз видит менее 60 кадров в секунду. То, как мы воспринимаем статические изображения, отличается от того, как мы воспринимаем движущиеся изображения.
Сколько FPS видит человеческий глаз
В итоге были выведены минимальные, максимальные, а также средние значения fps, которые нормально воспринимаются человеческим глазом. Строение человеческого глаза таково, что он «запрограммирован» видеть не отдельные кадры, а картинку в целом. То есть даже если показывать человеку по 1 кадру в секунду в течение длительного промежутка времени, то он станет воспринимать не отдельные изображения, а общую картину движения. Однако такое fps довольно низкое и создаёт стойкое ощущение дискомфорта.
К этому выводу пришли кинематографисты ещё во времена немого кино. Именно тогда частота кадров в секунду была равна 16. Если сравнить немое кино с современными картинами, то будет видна явная разница — возникнет ощущение замедленной съёмки.
В современных картинах признан общемировой стандарт 24 кадра в секунду. Это fps, в котором человеческий глаз видит общую картину во вполне комфортных условиях. Но является ли это пределом?
Современные значения fps Казалось бы, если 24 кадра в секунду достаточно для глаза, то есть ли практический смысл добиваться большего? Оказывается, есть. Сегодня в этом может убедиться каждый обладатель компьютера, который хоть раз играл в какую-либо динамическую игру.
При fps равном 24, человеческий глаз видит не только общую картину на экране монитора, но и отдельные кадры. Вот тут-то и пришлось разработчикам игр поусердствовать, чтобы выяснить, какие же значения оптимальны в этом контексте. Более современные исследования показали, что человеческий глаз видит и воспринимает изображения со скоростью до 60 кадров в секунду!
Зачем нужно знать частоту мерцания? Это может отвлекать, если вы можете воспринимать частоту мерцания, а не один непрерывный поток света и изображения. Итак, сколько FPS может видеть человеческий глаз? Вы можете задаться вопросом, что произойдет, если вы смотрите что-то с действительно высокой частотой кадров в секунду. Вы действительно видите все эти мелькающие кадры? В конце концов, ваш глаз не двигается со скоростью 30 движений в секунду. Короткий ответ заключается в том, что вы, возможно, не в состоянии сознательно регистрировать эти кадры, но ваши глаза и мозг могут осознавать их. Например, возьмем скорость 60 кадров в секунду, которую многие приняли за верхний предел. Некоторые исследования показывают, что ваш мозг действительно может идентифицировать изображения, которые вы видите, в течение гораздо более короткого периода времени, чем думали эксперты.
Например, авторы исследования Массачусетского технологического института, проведенного в 2014 году, обнаружили, что мозг может обрабатывать изображение, которое видит ваш глаз, всего за 13 миллисекунд — очень высокая скорость обработки. Это особенно быстро по сравнению с общепринятыми 100 миллисекундами, которые использовались в более ранних исследованиях. Тринадцать миллисекунд переводятся примерно в 75 кадров в секунду. Есть ли тест FPS для человеческого глаза? Некоторые исследователи показывают человеку быстрые последовательности изображений и просят ответить, чтобы увидеть, что они смогли обнаружить. Это то, что сделали исследователи в исследовании 2014 года, чтобы определить, что мозг может обрабатывать изображение, которое ваш глаз видел только в течение 13 миллисекунд.
Благодаря им можно различать цвета и оттенки, воспринимать изображения. Сложность нахождения максимального fps framers per second заключается в расположении этих рецепторов. У людей количество фпс на периферии зрительной системы увеличено. Это своеобразная адаптация организма к способу существования, которая определяет, что видит человеческий глаз. Зрительная система настроена таким образом, чтобы видеть цельную картину. Вот почему если показывать по 1 кадру в секунду некоторое время, то человек увидит полное изображение. Однако доказано, что резкие перепады fps дискомфортные и их с трудом воспринимает человеческий глаз. Во времена немого кино количество кадров равнялось 16, но жадные владельцы кинотеатра намеренно увеличивали до 30, что негативно влияло на впечатления от просмотра. Стандартом, комфортным для зрения, является 24 фпс. Зрительная система уникальна: комфортным может быть восприятие 60—100 кадров в секунду. Однако это вовсе не предел, так как известны случаи, где фпс было 220.
В конечном счете, оптимальное количество кадров в секунду зависит от предпочтений и способностей каждого игрока. Практическое значение FPS для видеоигр Частота кадров в секунду FPS — это важный параметр, определяющий плавность и реалистичность изображения в видеоиграх. Чем выше FPS, тем более плавное и реалистичное будет воспроизведение движений и действий на экране. Оптимальное значение FPS для видеоигр зависит от типа игры и предпочтений игрока. В некоторых жанрах, таких как шутеры от первого лица или гоночные игры, высокая частота кадров может быть критически важна для точности и реакции. В таких играх игрокам может понадобиться стабильные 60 или даже 120 FPS для достижения максимальной отзывчивости. Рекомендуем прочитать: Определение распространенных видов черных гусениц: руководство для Стебель 2024 В других жанрах, например, визуально насыщенных RPG или приключенческих играх, плавность движений может менее значима, и FPS в диапазоне от 30 до 60 может быть достаточным. Это позволяет распределить вычислительную мощность графической карты на более высокие текстуры и эффекты. Однако стоит отметить, что частота кадров выше 60 FPS не всегда ощущается человеческим глазом. Обычно глаз воспринимает изображение с частотой кадров около 24 FPS как плавное. Это объясняется особенностями восприятия глаза и физиологией зрения. Итак, оптимальная частота кадров для видеоигр зависит от множества факторов, таких как жанр игры, системные требования и предпочтения игрока. Важно найти баланс между плавностью изображения и производительностью компьютера, чтобы достичь наилучшего опыта игры. Плавное отображение в видеоиграх является одним из ключевых факторов для комфортной игры. Ведь чем выше частота кадров в секунду FPS , тем более плавно и реалистично движется изображение на экране. Если вы хотите повысить плавность отображения в видеоиграх, есть несколько способов, которые можно попробовать. Во-первых, стоит обратить внимание на настройки игры. Отключите вертикальную синхронизацию VSync , поскольку она может ограничивать частоту обновления экрана и вызывать задержку. Также проверьте, нет ли других ограничений на кадры, которые можно отключить или изменить в настройках игры. Во-вторых, обновите драйверы графической карты. Устаревшие драйверы могут приводить к проблемам с плавностью отображения. Проверьте наличие обновлений на официальном сайте производителя вашей графической карты и установите последнюю версию драйверов. В-третьих, проверьте настройки графики в операционной системе. Убедитесь, что включена максимальная производительность и отключены все эффекты и анимации, которые могут отнимать ресурсы компьютера. В-четвертых, обратите внимание на апгрейд аппаратной части компьютера. Если ваша система не может обеспечить достаточную производительность для запуска игр с высокой частотой кадров, возможно, стоит обновить процессор, графическую карту или увеличить объем оперативной памяти. В-пятых, запустите игру в оконном режиме с разрешением, соответствующим вашему монитору. Это может помочь улучшить производительность и плавность отображения. Наконец, не забывайте периодически очищать систему от мусора и оптимизировать ее работу.
Сколько кадров видит глаз человека
Глаз человека видит изображение, как и все остальное не по кадрово, а это значит, что чем больше кадров будет показано за одну секунду, тем более плавным. Если человеческий глаз видит только 24 кадра в секунду, то почему видео в 60 fps кажутся нам плавнее? Исследования, эксперименты и научные обоснования и комментарии о том, сколько же Гц видит глаз обычного человека, и отличаются ли геймеры от нас. Хотя человеческий глаз способен воспринимать около 60 FPS, для разного типа контента требуется разное количество кадров. Некоторые эксперты скажут вам, что человеческий глаз может видеть от 30 до 60 кадров в секунду. Значит, в человеческом глазу 127 Мегапикселей, так?
Мифы про FPS и зрение человека, в которые уже можно не верить
Более высокий FPS не даст заметного улучшения картинки, зато сильно увеличит объем видеопотока. Это снижает задержки управления в играх и делает видео максимально плавным. Также существуют мониторы с частотой 240 Гц и выше, ориентированные на киберспорт. Но даже профессиональные геймеры физически не способны ощутить разницу с 120 кадрами в секунду. Перспективы развития технологий отображения Хотя сегодня 60 FPS уже обеспечивает предел восприятия для человека, технологии продолжают развиваться. Созданы прототипы гибких дисплеев с частотой обновления 480 Гц. Также разрабатываются методы непосредственной стимуляции зрительного нерва с помощью имплантов. В будущем такие технологии позволят существенно расширить границы человеческого восприятия и полностью погрузиться в виртуальную реальность. Например, у хищных птиц он доходит до 140 кадров в секунду.
Это позволяет им лучше отслеживать добычу во время полета. А вот у собак и кошек этот показатель ниже человеческого - всего 50-60 FPS. Зато у них гораздо шире угол обзора и лучше развито ночное зрение. Однако есть несколько рекомендаций, которые помогут сохранить максимальную четкость зрения: Регулярные тренировки фокусировки и слежения за объектами Упражнения для глаз и мышц век Правильное питание с достаточным количеством витаминов Использование средств защиты зрения при работе с экранами Такие простые методы помогут глазам оставаться в тонусе и сохранять максимальную кадровую частоту восприятия! FPS в виртуальной реальности Сколько кадров в секунду видит человеческий глаз - этот вопрос особенно актуален для разработчиков технологий виртуальной реальности VR. Дело в том, что в шлемах и очках VR картинка находится в непосредственной близости к глазам. Это повышает чувствительность к мельканиям и артефактам изображения. Поэтому для комфортного погружения в VR требуется повышенная плавность картинки - как минимум 90-120 FPS при максимально низкой задержке отклика системы.
Перспективы развития дисплеев Несмотря на ограничения человеческого глаза, производители продолжают совершенствовать дисплеи.
Это fps, в котором человеческий глаз видит общую картину во вполне комфортных условиях. Но является ли это пределом?
Современные значения fps Казалось бы, если 24 кадра в секунду достаточно для глаза, то есть ли практический смысл добиваться большего? Оказывается, есть. Сегодня в этом может убедиться каждый обладатель компьютера, который хоть раз играл в какую-либо динамическую игру.
При fps равном 24, человеческий глаз видит не только общую картину на экране монитора, но и отдельные кадры. Вот тут-то и пришлось разработчикам игр поусердствовать, чтобы выяснить, какие же значения оптимальны в этом контексте. Более современные исследования показали, что человеческий глаз видит и воспринимает изображения со скоростью до 60 кадров в секунду!
В этом случае все движения на экране монитора получаются наиболее плавными и реалистичными. Новейшие исследования Как известно, большинство учёных — это люди, которые не останавливаются на достигнутых результатах и проводят всё новые и новые тесты и эксперименты. Учёные-исследователи возможностей человеческого глаза не являются исключением.
Тесты проводятся следующим образом: группе людей предлагается просмотреть несколько видеозаписей с различной кадровой частотой. В некоторые из них в различные промежутки времени добавляются кадры с дефектом — на них изображено что-то лишнее, не вписывающееся в общую картину. Так, например, группе испытуемых показывали видео, дополненное летящим объектом.
Более половины участников эксперимента сумели заметить этот объект. Такой результат не вызывал бы удивления, если бы не одно «но» — fps видео составляло 220 кадров в секунду!
До 60 fps: исследование наглядно показало возможности человеческого глаза06.
Поэтому режиссеры придерживаются «золотого стандарта», тем самым делая кино фантазийным, чтобы люди, наоборот, могли отвлечься от реальности. В опыте участвовало 88 человек: им предложили наблюдать за LED-источником освещения в специальных очках, способных мигать с разной скоростью.
Так вот, практически все подтвердили, что в кадре они видели некий объект, рассмотреть который был невозможно из-за очень высокой частоты кадров. Но важен тот факт, что люди его все же заметили. Так что в итоге получилось? Мы поддержим ученых, которые подтверждают тот факт, что человеческий глаз видит до 50-60 кадров в секунду. Если у вас есть иное мнение или вы хотите опровергнуть наше, милости просим в комментарии. Вам будет интересно:.
Сколько кадров видит глаз человека
Сколько кадров в секунду видит человеческий глаз | Комфортное число FPS для игр и кино. Сколько кадров в секунду воспринимает человеческий глаз. обо всем этом читайте в нашей статье. Более современные исследования показали, что человеческий глаз видит и воспринимает изображения со скоростью до 60 кадров в секунду! Сколько мегапикселей в человеческом глазу? «Это зависит от стоимости глаза: чем он дороже, тем лучше разрешение, — шутит врач-офтальмолог А.А. Замыров, — На самом деле, с врачебной точки зрения, глаз нельзя приравнивать к камере.
Частота кадров: сколько визуальной информации воспринимает человек?
Возникает вполне логичный вопрос – сколько мегапикселей содержится в глазу человека? Какова максимальная частота кадров, которую видит человеческий глаз? Миф о том, что человеческий глаз видит максимум 24 кадра в секунду, имеет вековую историю. Мы не знаем его происхождения, но миф гласит, что человеческий глаз может воспринимать только 24 кадра в секунду.