Окончательная уверенность в том, что «мир РНК» действительно существовал, наступила после выявления деталей строения кристаллов рибосом методом рентгеноструктурного анализа.
Ученые нашли новое потенциальное объяснение возникновению жизни на Земле
Новые доказательства гипотезы РНК-мира: ученые обнаружили способ самовоспроизведения молекул без участия белков. Новые доказательства гипотезы РНК-мира: ученые обнаружили способ самовоспроизведения молекул без участия белков. В конце концов, был написан сценарий «Мир РНК», согласно которому сначала якобы образовалась РНК, содержащая информацию о белке, а затем и сам белок.
Ученые описали, как появилась РНК
Этот неферментативный механизм приводил к образованию большого количества копий разрушенного полимера, подобно тому, как регенерируют черви, разрезанные на сегменты. Во второй модели способные к спонтанному образованию рибозимы, катализирующие расщепление, были добавлены к пулу полимерных РНК-цепочек, которых они разрезали при столкновении. Полимерные цепочки способны спариваться определенным образом. Если одна из цепочек обладает петлей шпилькой , то возможно образование молекулы РНК, которая действует как рибозим типа hammerhead, способный осуществлять собственное расщепление. В дальнейшем начинается самовоcпроизводство этого энзима в соответствии с первой моделью.
В ходе эксперимента появились короткие цепочки РНК, которые действовали как праймеры — затравки для синтеза более длинных цепей РНК.
Из-за этого появлялось множество копий разрушенного полимера. Ученые сравнили такое явление с регенерацией червей, которых разрезают на сегменты. Ранее ученые выяснили, что социальный статус влияет на активность генов и передается от матери к детям.
Белки же по строению - более примитивны, чем РНК. Почему же доминирует обратная гипотеза? У кого какие мысли? Имею в виду, что почему бы в первичном "бульоне" сначала не возникнуть из абиогенных аминокислот белкам, а потом, когда наросла потребность по мере и вследствие роста биологического разнообразия в компактном и надежном складировании информации к белкам не присоединиться РНК и начать выполнять функцию кодирования информации. До этого же момента почему бы эту функцию не могли бы нести белки размножаясь грубо говоря по "принципу" прионов?
Белки - те же цепи, что и РНК, только не свернутые и состоящие из "немного" других звеньев. Не пойму почему тогда они должны быть первичными по отношению к белкам? Чем белки хуже? По идее предположительная репликация белков по аналогии с репликацией РНК должна идти более быстро и эффективно, чем репликация РНК если сравниваемые белки и их предположительные функциональные РНК - аналоги ещё относительно малы.
Однако было не ясно, как такая молекула может возникнуть из предшественников, не способных к каталитической активности. Оказалось, что рибозим, который способен расщеплять другие молекулы, может возникнуть спонтанно, поскольку для обеспечения его функции необходимы только несколько консервативных оснований.
Однако оставалась проблема, как именно это свойство сохранилось в ходе биохимической эволюции. Исследователи разработали модель, которая имитирует случайные разрывы в простых молекулах РНК, лишенные ферментативной активности. В результате возникали короткие цепочки РНК, которые действовали как праймеры — затравки для синтеза более длинных цепей РНК.
ELife: выявлено самовоспроизведение молекул, подтверждающее гипотезу РНК-мира
Опарин подчеркнул тот факт, что некоторые химические вещества образуют сгустки — коацерваты — которые могут держать другие вещества внутри. Он предположил, что коацерваты были первыми протоклетками. Любое жирное или маслянистое вещество будет образовывать сгустки или пленки в воде. Эти химические вещества известны в общем как липиды. Соответственно, гипотезу о том, что с них начала жизнь, назвали «липидным миром». Но просто сформировать сгустки недостаточно. Они должны быть стабильными, уметь делиться на «дочерние» сгустки и хоть немного контролировать, что проходит внутрь и выходи наружу — и все это без сложных белков, которые используют современные клетки для этих задач.
Появилась задача собрать такие протоклетки из всего необходимого материала. Несмотря на множество попыток за много лет, Луизи так и не сделал ничего хоть мало-мальски убедительного. И тогда, в 1994 году, он осмелился сделать дерзкое предположение. Он предположил, что первые протоклетки должны были содержать РНК. Более того, эта РНК должна была уметь воспроизводиться внутри протоклетки. Как-то клетка все же появилась И вот, его гипотеза стала очень сложной и отошла от чистого подхода «сперва компартментализация».
Но у Луизи были веские доводы. Клетка с внешними стенками, но без внутренностей, мало что может. Возможно, она могла бы делиться на дочерние клетки, но не передавала бы никакой информации о себе потомству. Она могла начать развиваться и становиться более сложной только при наличии некоторых генов. Вскоре эта идея обрела сильного сторонника в лице Джека Шостака, работу которого на тему «мира РНК» мы изучили в третьей части. Луизи был членом лагеря «сперва компартментализация», Шостак поддерживал «сперва генетику», и много лет они не встречались с глазу на глаз.
Почти вся жизнь одноклеточная «Мы встречались на собраниях на тему происхождения жизни и затевали эти длинные дискуссии на тему того, что было важнее и что пришло первым», вспоминает Шостак. Мы пришли к общему мнению, что для возникновения жизни важно иметь и компартментализацию, и генетическую систему». В 2001 году Шостак и Луизи изложили свое видение этого единого подхода. В работе, опубликованной в Natire, они заявили, что должно быть возможность создать простую живую клетку с нуля, разместив реплицирующуюся РНК в обычной капле жира. Очень скоро Шостак решил полностью посвятить себя ей. Рассудив, что «мы не можем излагать эту теорию, ничем ее не подкрепив», он решил начать экспериментировать с протоклетками.
Спустя два года Шостак и двое его коллег объявили о большом успехе. Везикулы — это простые контейнеры, состоящие из липидов Они экспериментировали с везикулами: сферическими каплями с двумя слоями жирных кислот на внешней стороне и центральным жидким ядром. Пытаясь найти способ ускорить создание везикул, они добавили малые частички глины под названием монтмориллонит. Везикулы начали формироваться в 100 раз быстрее. Поверхность глины выступили катализатором, как некий фермент. Более того, везикулы могли поглощать как частицы монтморрилонита, так и цепи РНК с поверхности глины.
Теперь эти протоклетки уже содержали гены и катализатор, и все из одной простой добавки. Решение добавить монтмориллонит было принято не просто так. За несколько десятилетий много работ предположили, что монтмориллонит и подобные ему глины могли иметь важное значение для происхождения жизни. Кусок монтмориллонита Монтмориллонит — это обычная глина. В настоящее время она используется для самых разных дел, из нее даже кошачий наполнитель делают. Образуется она, когда вулканический пепел расщепляется погодой.
Поскольку ранняя Земля изобиловала вулканами, кажется вероятным, что на ней было и много монтмориллонита. Еще в 1986 году химик Джеймс Феррис показал, что монтмориллонит выступает катализатором, который помогает формироваться органическим молекулам. Позже он обнаружил, что глина также ускоряет формирование малых РНК. Заходите в наш специальный Telegram-чат. Там всегда есть с кем обсудить новости из мира высоких технологий. И тогда Феррис предположил, что эта невзрачная глина могла быть местом зарождения жизни.
Шостак принял эту идею и включил ее в работу, используя монтмориллонит для строительства своих протоклеток. Годом спустя Шостак обнаружил, что его протоклетки могут расти сами по себе. Чем больше молекул РНК оказывалось в протоклетке, тем выше было давление на наружную стенку. Похоже, желудок протоклетки был забит и она была готова сходить по-большому. Чтобы компенсировать это, протоклетка приняла больше жирных кислот и включила их в стенки, благодаря чему раздулась еще больше и ослабила напряжение. Что важно, она взяла жирные кислоты из других протоклеток, в которых было меньше РНК, заставив их сократиться.
Будто бы протоклетки соперничали и та, у которой было больше РНК, побеждала. Но если протоклетки могут расти, может они и делиться могут? Сможет ли протоклетка Шостака воспроизвести себя? Клетки делятся на два Первые эксперименты Шостака показали, что способ деления протоклеток действительно есть. Если сжать ее в небольшом отверстии и вытянуть в трубочку, протоклетка разрывается, формируя «дочерние» протоклетки. Эта идея была неплохой, потому что в ней не участвовал никакой клеточный механизм: просто давление.
Но такое решение было не самым лучшим, поскольку протоклетки теряли часть содержимого в этом процессе. Это также означало, что первые клетки могли делиться лишь проталкиваясь через крошечные отверстия. Существует множество способов заставить везикулы делиться. Например, можно добавить сильный поток воды. Осталось только заставить протоклетки делиться и не терять кишки. В 2009 году Шостак и его студент Тинг Чжу нашли решение.
Они сделали немного более сложные протоклетки с наружными стенками в несколько слоев, напоминающие слои лука. Несмотря на такую сложность, эти протоклетки все еще было просто создать. Когда Чжу кормил их жирными кислотами, протоклетки росли и меняли форму, вытягиваясь в длинные канатоподобные цепочки. После того, как протоклетка становилась достаточно длинной, легкой приложенной силы достаточно, чтобы разбить ее на десятки мелких дочерних протоклеток. Более того, протоклетки могли повторять цикл постоянно, дочерние протоклетки росли и делились. Эту часть проблему, похоже, решили.
В последующих экспериментах Чжу и Шостак нашли еще больше способов заставить протоклетки делиться. Но все равно протоклеткам многого недоставало. Чтобы показать, что его протоклетки могли быть первой жизнью на Земле, Шостаку нужно было заставить РНК внутри них воспроизводиться. В будущем мир ожидает спад рождаемости. Что это значит для человечества? Это было нелегко, поскольку, несмотря на десятилетия попыток — изложенных в третьей части, — никто так и не смог заставить РНК самовоспроизводиться.
Эта же проблема загнала Шостака в угол в ходе его первых работ над «миром РНК», и никому другому не удалось ее решить. Поэтому он вернулся и перечитал работу Лесли Оргела, который так долго работал над гипотезой РНК-мира. В этих пыльных бумагах обнаружились ценные подсказки. Оргел провел много времени с 1970-х по 1980-е, изучая копирование цепей РНК. Первая клетка должна была вмещать химию жизни По сути все просто. Возьмите одну цепь РНК и набор свободных нуклеотидов.
Затем, используя эти нуклеотиды, соберите вторую цепь РНК, комплементарную первой. Сделав это дважды, вы получите копию оригинальной «CGC», только окольным путем. Оргел обнаружил, что при определенных обстоятельствах цепи РНК могут копироваться таким образом без какой-либо помощи ферментов. Возможно, именно так первая жизнь создала копии своих генов. К 1987 году Оргел мог взять цепь РНК длиной в 14 нуклеотидов и создать дополняющие цепи длиной тоже в 14 нуклеотидов. Больше ему сделать не удалось, но этого было достаточно, чтобы заинтриговать Шостака.
Его ученица Катажина Адамала попыталась запустить такую реакцию в протоклетках. Они обнаружили, что для работы такой реакции нужен магний. Но магний уничтожил протоклетки. Впрочем было и простое решение: цитрат, который почти идентичен лимонной кислоте и который присутствует во всех живых клетках. В исследовании, опубликованном в 2013 году, они добавили цитрат и обнаружили, что тот обволок магний, защищая протоклетки и позволяя шаблону продолжать копироваться. Другими словами, им удалось сделать то, что Луизи предлагал в 1994 году.
Протоклетки Шостака могут жить в сильном тепле Всего за десять лет исследований команде Шостака удалось совершить невероятное. Они создали протоклетки, которые сохраняют свои гены, при этом забирая полезные молекулы снаружи. Эти протоклетки могут расти и делиться и даже соперничать между собой. РНК может воспроизводиться внутри них. С какой стороны ни посмотри, они были похожи на первую жизнь. Как собаки понимают человеческий язык?
Еще они были весьма устойчивыми. В 2008 году группа Шостака обнаружила, что эти протоклетки могут переживать нагрев до 100 градусов по Цельсию, температуры, которая уничтожает большинство современных клеток. Следовательно, эти протоклетки были похожи на первую жизнь, которая должна была переживать сильное тепло от постоянных ударов метеоритов. Тем не менее, на первый взгляд, подход Шостака идет вразрез с 40 годами исследований происхождения жизни. Вместо того чтобы озадачиться «сперва воспроизводством» или «сперва компартментализацией», он решил делать оба дела сразу. Молекулы жизни ведут себя крайне сложно Это открывает путь к новому подходу к поиску происхождения жизни — единому, объединенному, унифицированному подходу.
Он должен охватить все функции первой жизни сразу и одновременно. Эта гипотеза «сперва всё» уже насобирала достаточно свидетельств и может решить все проблемы существующих идей. Часть шестая: великое объединение На протяжении второй половины 20-го века исследователи происхождения жизни работали каждые в своем лагере. Каждая группа настаивала на собственной версии развития событий и старалась уничтожить конкурирующие гипотезы. Такой подход был безусловно успешным, о чем свидетельствуют предыдущие главы, но каждая перспективная идея о происхождении жизни в конечном счете наталкивалась на серьезную проблему. Так что некоторые исследователи сейчас пытаются найти более единый подход.
Несколько лет назад эта идея получила мощный толчок, благодаря результату, поддерживающему устоявшуюся теорию «мира РНК». К 2009 году у сторонников мира РНК была большая проблема. Они не могли сделать нуклеотиды, строительные блоки РНК, как если бы это происходило в условиях ранней Земли. Это и привело людей к мысли, что первая жизнь вовсе не была построена на РНК, как мы выяснили в третьей части. Земля — единственное место, где есть жизнь. Пока Джон Сазерленд думал об этой проблеме с 1980-х.
Большинство научно-исследовательских институтов заставляют своих сотрудников постоянно генерировать новые работы, но LMB нет. Поэтому Сазерленд мог хорошенько обдумать, почему сделать нуклеотид РНК так сложно, и провел годы, разрабатывая альтернативный подход. Его решение привело его к совершенно новой идее о происхождении жизни: все ключевые компоненты жизни могли сформироваться одновременно. Каждый нуклеотид РНК состоит из сахара, основания и фосфата. Но заставить сахар и основание соединиться оказалось невозможно. Молекулы просто не той формы.
Поэтому Сазерленд начал пробовать совершенно другие вещества. В конечном счете его команда пришла к пяти простым молекулам, включая другой сахар и цианамид, родственный цианиду. Эти химические вещества пропустили через цепочку реакций и в конечном итоге сделали два из четырех нуклеотидов РНК, не делая отдельные сахара или основания. Это был ослепительный успех, который сделал Сазерленду имя. Многие наблюдатели интерпретировали эти результаты как еще одно доказательство в пользу мира РНК. Но сам Сазерленд так не считал.
Но Сазерленд говорит, что это безнадежно оптимистично. Он считает, что РНК принимала важное участие, но на ней все клином не сходилось. Вместо этого он вдохновился одной из последних работ Шостака, которая как мы выяснили в пятой части совмещала РНК-мир «сперва воспроизводства» с идеями «сперва компартментализации» Пьера Луиджи Луизи. Сазерленд пошел еще дальше. Его подход представлял собой «сперва всё». Он хотел, чтобы цельная клетка собралась сама по себе с нуля.
К этому его привела странная деталь в его синтезе нуклеотидов, которая сначала казалась случайной. Жизни нужна жирная смесь веществ Последним шагом в процессе Сазерленда было забросить фосфат в нуклеотид. Однако он выяснил, что лучше всего было включать фосфат в смесь с самого начала, поскольку он ускорял первые реакции. Казалось, что включение фосфата до того, как он понадобится на самом деле, было слегка «грязноватым» действием, но Сазерленд выяснил, что этот хаос — это хорошо. И так он задумался о том, насколько беспорядочными должны быть смеси. Во времена ранней Земли должны были существовать десятки или сотни химических веществ, плавающих вместе.
Рецепт шлама? Но беспорядок может быть важным условием. Смеси, которые Стэнли Миллер приготовил в 1950-х годах, о которых мы говорили в первой части, были куда грязнее сазерлендовых. Они включали биологические молекулы, но Сазерленд говорит, что они «были в небольших количествах и сопровождались огромным количеством других, не биологических соединений». Что происходит с человеком после переедания? Сазерленд считал, что подход Миллера был недостаточно хорош.
Он был слишком грязным, поэтому хорошие химические вещества просто терялись в смеси. Поэтому Сазерленд вознамерился найти «химию Златовласки»: не слишком грязную, чтобы стать бесполезной, но и не слишком простую, чтобы быть ограниченной в возможностях. Получить достаточно сложную смесь — и все компоненты жизни смогут сформироваться одновременно и найти друг друга. Другими словами, четыре миллиарда лет назад на Земле был пруд. Он существовал годами, пока в нем не собрались нужные химические вещества. Затем, возможно, за какие-нибудь пару минут появилась первая клетка.
Горстки химвеществ недостаточно для жизни Это может показаться совершенно неправдоподобным, словно заявления средневековых алхимиков. Но у Сазерленда только прибавляется доказательств. В 2009 году он показал, что та же химия, которая позволила собрать два его нуклеотида РНК, также может создавать многие другие молекулы жизни. Очевидным следующим шагом было сделать больше нуклеотидов РНК. Пока этого сделать не удалось, но в 2010 году он собрал тесно связанные молекулы, которые потенциально могут превратиться в нуклеотиды. Точно так же, в 2013 году он сделал прекурсоры аминокислот.
На этот раз ему пришлось добавить цианид меди, чтобы заставить реакцию протекать. Связанные с цианидом химические вещества оказались общей темой, и в 2015 году Сазерленд сделал с ними еще больше. Он показал, что в том же горшке с химическими веществами могут появиться и прекурсоры липидов, молекул, из которых состоят стенки клеток. Все эти реакции полагались на ультрафиолетовый свет, включали серу и медь как катализатор. Жизни нужен настоящий рог изобилия химвеществ «Все строительные блоки вышли из общего ядра химических реакций», говорит Шостак. Если Сазерленд прав, то весь наш подход к происхождению жизни за последние 40 лет был в корне неверным.
С тех пор, как стала очевидной сложность клетки, ученые начали работать с предположением, что первые клетки должны были собираться постепенно, по частям. Вслед за предложением Лесли Оргела о том, что сначала появилась РНК, ученые пытались «поставить одно перед другим, а потом как-то получить порядок», говорит Сазерленд. Но он думает, что лучше всего — сделать все и сразу. Шостак теперь подозревает, что большинство попыток сделать молекулы жизни и собрать их в живые клетки провалились по одной причине: эксперименты были слишком чистыми. На каких животных охотились собаки 1000 лет назад? Ученые использовали несколько химических веществ, которые были им интересны, и оставляли все прочие, которые тоже, вероятно, присутствовали на ранней Земле.
Но работа Сазерленда показала, что добавляя больше химических вещей в смесь, можно создать больше сложных явлений. Шостак и сам столкнулся с этим в 2005 году, когда пытался разместить фермент РНК в своих протоклетках. Ферменту нужен был магний, который уничтожал мембраны протоклеток. Решение оказалось на удивление простым. Вместо того чтобы делать везикулы из одной только жирной кислоты, их сделали из смеси обоих веществ. Новые, «грязные» везикулы справлялись с магнием и могли размещать работающие ферменты РНК.
Более того, Шостак говорит, что первые гены тоже могли включать беспорядок. В 2012 году Шостак показал, что такая смесь может собираться в «мозаику» молекул, которая выглядит и ведет себя почти как чистая РНК. Мы не знаем, существовали они на Земле или нет, но если да, то первые организмы вполне могли использовать и их. Это уже был не «мир РНК», а «мир вперемешку». Урок этих исследований в том, что сделать первую клетку может быть было не так сложно, как кажется. Да, клетки — сложные машины.
Но оказывается, что они продолжают работать, хоть и не так хорошо, если их слепить небрежно, как снежок. Кажется, что такие неуклюжие клетки не имели шансов выжить на ранней Земле. Но у них практически не было конкуренции, им не угрожали никакие хищники, поэтому во многих отношениях жизни было проще, чем сейчас. В юности Землю постоянно бомбардировали метеориты Однако существует одна проблема, которую не смогли решить Сазерленд или Шостак, и это серьезная проблема. Первый организм должен был иметь какой-то метаболизм, обмен веществ. С самого начала жизнь должна была получать энергию, либо умереть.
В этом Сазерленд согласен с Майком Расселлом, Биллом Мартином и другими сторонниками теорий «сперва метаболизм» из четвертой части. Даже если Мартин и Расселл ошибаются на тему того, что жизнь началась у глубоководных источников, многие элементы их теории почти наверняка верны. Один из них — значение металлов для рождения жизни. У этого фермента в центре металл В природе у многих ферментов есть атом металла в ядре. Зачастую это «активная» часть фермента; остальная часть молекулы выступает поддерживающей структурой. Первая жизнь не могла иметь таких сложных ферментов, поэтому почти наверняка использовала «голые» металлы в качестве катализаторов.
Гюнтер Вахтершаузер подметил это, когда предположил, что жизнь образовалась на основе железного пирита. Аналогичным образом, Расселл подчеркивал, что воды гидротермальных источников богаты металлами, которые могут выступать в качестве катализаторов — и исследование Мартина выявило множество ферментов на основе железа у последнего универсального общего предка LUCA.
Одна гипотеза годами привлекала научное воображение: Мир РНК. Эта теория предполагает, что молекулы пребиотиков рано объединились, чтобы сформировать РНК, молекулы, которые несут инструкции от ДНК в организмах сегодня.
Проблема в том, что ингредиенты, такие как ферменты, для работы Мира РНК просто не существовали на ранней Земле. Мир РНК породил идею, что если вы каким-то образом синтезируете РНК, которая может реплицировать и катализировать реакции, все остальное автоматически следует. Часть проблемы заключается в том, что молекулы РНК образуют стабильные структуры, называемые дуплексами.
Когда гипотеза, которую в 1986 году назвали «мир РНК», набрала популярность, Картер, по его признанию, был выбит из колеи. Ему казалось, что его мир пептидов и РНК, предложенный за десять лет до этого, полностью проигнорировали. С тех пор он, Уиллс и другие совместно работали над теорией, возвращающейся к тому исследованию. Их главной целью было вывести простейший генетический код, предшествующий современному, более специфичному и сложному. Поэтому они обратились не только к вычислениям, но и к генетике. В основе их теории лежат 20 «нагрузочных» молекул, аминоацил-тРНК-синтетазы. Эти каталитические ферменты позволяют РНК связываться с определёнными аминокислотами в соответствии с правилами генетического кода. Предыдущие исследования показали, что 20 ферментов можно поровну разделить на две группы по 10 штук на основе их структуры и последовательностей. Два этих класса ферментов обладают определёнными последовательностями, кодирующими взаимоисключающие аминокислоты — то есть, эти ферменты должны были появиться из дополняющих цепочек одного древнего гена. Картер, Уиллс и их коллеги обнаружили, что в таком случае РНК кодировала пептиды при помощи набора всего из двух правил или, иначе говоря, использовала два типа аминокислот. Получившиеся пептиды поддерживали те же самые правила, что управляют процессом передачи, благодаря чему возникает ключевая для этой теории петля обратной связи. РНК-пептидный мир Жизнь могла появиться из взаимодействия РНК и пептидов, работавших в качестве первого генетического кода. Самоподдерживающаяся петля реакций создавала бы ферменты, выбирая всего из двух типов аминокислот вместо 20 типов, имеющихся в современных белках. В недавних работах Картер и Уиллс показывают, что их мир пептидов-РНК решает проблемы с пробелами в истории происхождения жизни, которые неспособна объяснить только одна РНК. Конечно, модель Картера-Уиллса начинается с генетического кода, существование которого предполагает сложные химические реакции, куда входят такие молекулы, как транспортная РНК и нагрузочные ферменты.
Получается, что РНК — это курица и яйцо одновременно. Дополнительным аргументом в пользу гипотезы существования древнего мира РНК стало обнаружение в 2019 году рибозы — сахара, входящего в состав РНК — в метеорите. Изотопный анализ показал внеземное происхождение этой рибозы.
Ученые нашли новое потенциальное объяснение возникновению жизни на Земле
Об этом ТАСС сообщил директор по комплексной безопасности группы компаний… Устроивших массовую драку в Туапсе граждан Узбекистана выдворят из России Пятнадцать граждан Республики Узбекистан, устроивших в среду массовую драку в Туапсе, будут оштрафованы и выдворены из России, сообщили в прокуратуре Краснодарского края. Кадры массовой драки появились в сети ещё в… МИД Польши: Дуда не уполномочен обсуждать размещение ядерного оружия Президент Польши Анджей Дуда не уполномочен обсуждать возможность размещения ядерного оружия в стране. Хотя некоторым удается ограничиться незначительным увеличением, для большинства это становится серьезной проблемой.
John Sutherland удалось продемонстрировать возможность синтеза уридина и цитидина с высокой эффективностью и степенью закрепления результата реакции а также с возможностью накопления конечных продуктов в условиях ранней Земли. Сначала темп синтеза был замедлен ядом, но примерно после девяти «пробирочных поколений» эволюции в процессе естественного отбора вывелась новая порода РНК, стойкая к яду. Путём последовательного удвоения доз яда была выведена порода РНК, стойкая к очень высоким его концентрациям. Всего в эксперименте сменилось 100 пробирочных поколений и намного больше поколений РНК, так как поколения сменялись и внутри каждой пробирки. Хотя в этом эксперименте РНК-репликаза добавлялась в раствор самими экспериментаторами, Оргел обнаружил, что РНК способны и к спонтанному самокопированию, без добавления фермента, правда, намного медленнее. Дополнительный эксперимент был позже проведён в лаборатории немецкой школы Манфреда Ейгена. Она была создана постепенно нарастающей эволюцией. Фактором, играющим роль давления отбора, являлась ограниченность субстрата исходных химических реактивов в среде , из которых РНК строили свои копии.
При построении копий иногда случались дефекты — мутации — влияющие на их каталитическую активность. По этому признаку и происходил отбор молекул: наиболее быстро копирующиеся молекулы быстро начинали доминировать в среде.
Результаты нового исследования говорят, что присутствие в качестве кофактора соединений железа II , в те времена присутствовавших на Земле в значительных количествах могло увеличить каталитическую активность РНК в значительной степени, но только в том случае, когда в атмосфере отсутствует кислород [1]. Железо могло сыграть гораздо более существенную роль в образовании жизни на Земле, чем предполагалось ранее. Гипотеза мира РНК представляет собой одну из моделей биогенеза. В соответствие с ней предполагается, что до того, как ДНК эволюционировала и получила способность кодировать синтез белка, молекулы РНК вели себя и как кодирующие нуклеотиды и как биологический катализатор — предок ферментов.
Описание внутренних пар между основаниями РНК называется вторичной структурой.
В основе этой структуры лежит формирование внутренних пар между дополнительными основаниями: A с U , G с C и, иногда, G с U. В 1980-х Том Чех и Сидни Альтман независимо друг от друга обнаружили, что определенные РНК, позже названные рибозимами , могут действовать как катализаторы, подобно белкам. Это неожиданное открытие принесло Чеху и Альтману Нобелевскую премию по химии в 1989 году. В 1990 году Ларри Голд и Джек Шостак разработали метод управления эволюцией РНК, чтобы выбрать те, которые проявляют каталитическую активность. С тех пор им удалось получить рибозимы, способные связывать нуклеотиды вместе, связывать аминокислоты с РНК, выполнять окислительно-восстановительные реакции , связываться с компонентами мембран и т. РНК также может вести себя как рибозим сокращение рибозы и фермента и катализировать определенные реакции, как и ферменты. Таким образом, с точки зрения воспроизводства, эта молекула выполняет две важные функции: хранение информации и катализ, необходимый для самовоспроизведения.
Таким образом, рибосома является рибозимом в том смысле, что человек, ответственный за синтез белка, является не белком как это имеет место в подавляющем большинстве случаев катализа живой клетки , а его рибосомной РНК - даже. Эти рибозимы могут складываться в пространстве, открывая активный сайт для катализа, как и белки. Томас Чех указал, что РНК может быть первой реплицирующейся молекулой благодаря своим каталитическим и автокаталитическим свойствам: Структура РНК является основой богатства своих обязанностей, и , в частности , их способность катализировать в реакции химические рибозимы ; и наоборот, относительно жесткие правила спаривания между основаниями РНК позволяют транскрибировать цепь в ее негативе, а с помощью новой транскрипции сделать возможным дублирование оригинала. Следовательно, теоретически возможно, что на этой модели одной РНК достаточно для установления примитивного метаболизма. В рибозимы будучи в состоянии обеспечить как роль поддержки генетической информации и катализатора, что позволило преодолеть парадокс, предлагая , что РНК -единственный предшественника, который был предложен в 1986 году Уолтером Гилбертом , со-изобретателя секвенирования ДНК. РНК присутствуют в трех ветвях живого мира археи , прокариоты , эукариоты. Кроме них, можно найти большое количество РНКА , участвующие в таких функциях, как катализ, регуляция экспрессии генов, контроля, анти - вирусные защиты , гена вымирания , торможения белковых синтезов, геномные восстановления и т.
Так обстоит дело с интерферирующими РНК , механизм которых некоторые исследователи квалифицируют как «универсальный». Интерпретация «самовоспроизводящегося» персонажа В результате этих исследований возник образ популяции взаимозависимых цепей РНК, воспроизводящихся в рамках своего рода химической экосистемы, и где каждая цепочка избирательно конкурирует в отношении своих собственных аллелей. Строго говоря, неправильно говорить о «саморепликации», поскольку цепь РНК, обладающая способностью катализировать репликацию РНК-зависимая РНК-полимераза , не делает это на самой цепи катализатора, а в лучшем случае. Нить полимеразы, агент репликации, отличается от цепи, которая является объектом той же самой репликации: даже когда эти две цепи похожи, они не перепутаны. Кроме того, эта «репликация» заключается во всех моделях получения комплементарной цепи данной цепи, а не непосредственно идентичной цепи. Только на второй стадии, когда комплементарная цепь реплицируется, фактически синтезируется цепь, идентичная полимеразе.
Исследователи смешивают РНК и ДНК, чтобы изучить, как началась жизнь на Земле
Такой сценарий, по его мнению, больше соответствует результатам экспериментов и тому, что мы видим в современных организмах, чем гипотеза «РНК-мира». Окончательная уверенность в том, что «мир РНК» действительно существовал, наступила после выявления деталей строения кристаллов рибосом методом рентгеноструктурного анализа. Исследования в рамках гипотезы «мира РНК» показали, что эти макромолекулы способны и к полноценной химической эволюции. Ученые из Университета Иллинойса представили новые доказательства в поддержку гипотезы РНК-мира, которая является важной теорией о происхождении жизни на Земле. Пост автора «Хайтек+» в Дзене: Найдено подтверждение гипотезы «РНК-мира» Эволюция, по определению Дарвина, это наследование с модификациями.
ELife: выявлено самовоспроизведение молекул, подтверждающее гипотезу РНК-мира
Во второй модели к пулу РНК-цепочек, способных к спонтанному образованию рибозим, были добавлены ферменты, катализировавшие расщепление. Полимерные цепочки могли спариваться определенным образом, что приводило к образованию молекул РНК, способных к саморазрушению. Репликация полимера осуществлялась за счет циклического изменения температуры, что позволяет предположить, что древние полимеры могли размножаться при помощи циклов день-ночь. Неорганические поверхности, такие как камни, также могли способствовать этому процессу.
Эта идея оказалась чрезвычайно противоречивой, опять же, потому что не сходилась с Библией. Дарвин и его идеи оказались под шквалом атаки, отчасти возмущенных христиан. Теория эволюции ничего не говорила о том, как появился самый первый организм. Дарвин считал, что жизнь появилась в «маленьком теплом пруду» Дарвин знал, что это глубокий вопрос, но — возможно, опасаясь новых нападок со стороны церкви — осмелился обсудить его лишь в 1871 году. Приподнятый тон письма показывает, что он знал глубокое значение этого вопроса: «Но если бы и ох какое это большое «если бы» мы могли представить себе небольшой теплый пруд со всеми видами аммиака и фосфорной соли — со светом, теплом, электричеством — в котором химически образовалось бы белковое соединение, готовое пройти через еще более сложные изменения…» Другими словами, что если когда-то был небольшой водоем, наполненный простыми органическими соединениями и купающийся в солнечном свете? Некоторые из этих соединений, возможно, в совокупности образовали бы полуживое вещество вроде белка, который мог бы начать развиваться и становиться все более сложным. Эта идея была поверхностной.
Но она легла в основу первой гипотезы появления жизни. Что любопытно, эта гипотеза появилась в СССР. Даже идеи людей, биологов, не связанных с коммунистической политикой. Что примечательно, Сталин фактически запрещал ученым изучать обычную генетику. Вместо этого он продвигал идеи фермера Трофима Лысенко, которые, по его мнению, больше соответствовали коммунистической идеологии. Ученые, работающие в области генетики, были вынуждены публично поддерживать идеи Лысенко, чтобы не оказаться в лагерях. Именно в такой репрессивной среде Александр Опарин проводил свои исследования в области биохимии. Он мог работать, поскольку был преданным коммунистом: поддерживал идеи Лысенко и даже получил орден Ленина, высшую награду времен СССР. В 1924 году Опарин опубликовал свою работу «Происхождение жизни». В ней он изложил свое видение зарождения жизни, которое было поразительно похоже на маленький теплый пруд Дарвина.
Океаны сформировались после того, как Земля остыла Опарин пытался представить, какой была Земля после формирования. Поверхность была обжигающе горячей, поскольку на нее падали камни из космоса. Мешанина из полурасправленных пород , содержащих огромный спектр химических веществ, в том числе и на основе углерода. В конце концов Земля остыла достаточно, чтобы водяной пар конденсировался в жидкую воду и пошел первый дождь. Он наполнил земные океаны, которые были горячими и богатыми углеродсодержащими химическими веществами. То, что нужно для жизни. Магия цвета: как цвета влияют на нашу жизнь Сначала различные химические вещества взаимодействовали между собой с образованием множества новых соединений, некоторые из которых были сложными. Опарин предположил, что молекулы, важнейшие для жизни, сахара и аминокислоты, могли образоваться в водах Земли. Затем некоторые химические вещества начали формировать микроскопические структуры. Много органических веществ не растворяется в воде: к примеру, масла образуют слой поверх воды.
Но когда некоторые из этих веществ контактируют с водой, они образуют сферические шарики «коацерваты», которые могут быть до 0,01 сантиметра в поперечнике. Если вы взглянете на коацерваты через микроскоп, они ведут себя весьма подвижно, как живые клетки. Они растут и меняют форму, иногда делятся на две части. Они также могут вбирать химические вещества из окружающей воды, поэтому в них могут оказаться подобные жизни химвещества. Опарин предположил, что коацерваты были предками современных клеток. Пятью годами позже, в 1929 году, английский биолог Джон Бёрдон Сандерсон Холдейн независимо предположил очень похожие идеи в короткой статье, опубликованной в Rationalist Annual. К тому времени Холдейн уже немало внес в теорию эволюции , помогая интегрировать идеи Дарвина в развивающуюся науку о генетике. Английский генетик Дж. Холдейн Как и Опарин, Холдейн описал, каким образом органические вещества могли бы накапливаться в воде, «пока первобытные океаны не дошли бы до консистенции горячего разбавленного супа». Это подготовило бы почву для «первых живых или полуживых вещей», которые сформировались и оказались в тонкой масляной пленке.
Показательно, что среди всех биологов мира только Опарин и Холдейн дошли до этого. Мысль о том, что живые организмы могут образоваться в процессе простых химических реакций, без бога или даже «жизненной силы», была радикальной. Как и теория эволюции Дарвина до нее, она тоже была плевком в лицо христианства. Но в рамки СССР вписывалась отлично. Советский режим был официально атеистическим, а его лидеры с радостью поддерживали любые материалистические объяснения глубоких явлений вроде жизни. Холдейн тоже был атеистом и еще и коммунистом в придачу. В западном мире, если взглянуть на людей, которые мыслили в этом направлении, все они были левыми, коммунистами и так далее». Мысль о том, что жизнь сформировалась в первичном бульоне органических веществ, стала гипотезой Опарина-Холдейна. Она была аккуратной и убедительной, но была одна проблема. Ее не поддерживали никакие экспериментальные доказательства.
И так продолжалось почти четверть века. Гарольд Юри К тому времени, когда Гарольд Юри стал интересоваться происхождением жизни, он уже получил Нобелевскую премию по химии 1934 года и помог построить атомную бомбу. Во время Второй мировой войны Юри работал над Манхэттенским проектом, собирая нестабильный уран-235, необходимый для сердечника бомбы. После войны он боролся, чтобы сохранить ядерные технологии под контролем граждан. Также он заинтересовался химией космоса, в частности тем, что происходило во времена формирования Солнечной системы. Однажды он прочитал лекцию и отметил, что в атмосфере Земли , вероятно, не было кислорода, когда она впервые сформировалась. Это стало идеальным дополнением к первичному бульону Опарина и Холдейна: хрупкие химические вещества могли быть уничтожены при контакте с кислородом. Докторант по имени Стэнли Миллер был в аудитории, а затем подошел к Юри с вопросом: можно ли проверить эту идею? Юри был скептичен, но Миллер настоял на своем. Поэтому в 1952 году Миллер начал самый известный эксперимент на тему происхождения жизни.
Эксперимент Миллера-Юри Настройки были простыми. Миллер соединил серию стеклянных колб и пустил по ним четыре химических вещества, которые могли присутствовать на ранней Земле: кипящая вода, газообразный водород, аммиак и метан. Затем он подверг газы многократному воздействию электрического тока, чтобы имитировать удары молнии, которые были обычным явлением на Земле в те времена. Миллер обнаружил, что «вода во флаконах стала значительно розовее после первого дня, а к концу недели раствор стал красным и мутным». Очевидно, образовалась смесь химических веществ. Что такое жизнь? Проанализировав смесь, Миллер обнаружил, что в ней есть две аминокислоты: глицин и аланин. Аминокислоты часто называют строительными блоками жизни. Они используются для образования белков, которые управляют большинством биохимических процессов в наших телах. Миллер сделал два важнейших компонента жизни буквально с нуля.
Результаты были опубликованы в престижном журнале Science в 1953 году. Юри поступил весьма необычно для старших ученых, сняв свое имя с работы и отдав все лавры Миллеру. Несмотря на это, исследование часто называют «экспериментом Миллера-Юри». Стэнли Миллер в лаборатории «Сила Миллера-Юри в том, что вы можете произвести множество биологических молекул просто из атмосферы», говорит Джон Сазерленд из Лаборатории молекулярной биологии в Кембридже, Великобритания. Детали оказались неверными, поскольку более поздние исследования показали, что атмосфера ранней Земли была другой смесью газов. Но это не меняет факта. Эксперимент удался, простимулировал воображение публики и разлетелся на цитаты. После эксперимента Миллера другие ученые начали искать способы создания простых биологических молекул с нуля. Решение тайны происхождения жизни, казалось, вот-вот появится. Но потом выяснилось, что жизнь была сложнее, чем кто-либо думал.
Живые клетки были не только мешками с химическими веществами: они были сложнейшими крошечными машинами. Внезапно создание клетки с нуля оказалось гораздо более сложной задачей, чем думали ученые. Часть вторая: раскол в рядах ученых Жизнь очень сложна. К началу 1950-х годов ученые отошли от давнего предположения, что жизнь была подарком богов. Вместо этого они начали исследовать возможность того, что жизнь на ранней Земле сформировалась стихийно и естественно — и благодаря знаковому эксперименту Стэнли Миллера даже получили некоторую практическую поддержку этой идеи. Пока Миллер пытался сделать материал жизни с нуля, другие ученые выясняли, из каких генов она состояла. К тому времени многие биологические молекулы стали известны. Сахара, жиры, белки и нуклеиновые кислоты вроде «дезоксирибонуклеиновой кислоты», или ДНК, если коротко. Сегодня мы уже привыкли к тому, что ДНК переносит наши гены, но для биологов 1950-х годов это было шоком. Белки более сложные, поэтому ученые думали, что они являются генами.
Есть ли жизнь в облаках Венеры? Они изучали простые вирусы, которые содержат только ДНК и белок и которые должны заражать бактерии, чтобы воспроизводиться. Они и выяснили, что в бактерию попадает вирусная ДНК, а белки остаются снаружи. Очевидно, именно ДНК была генетическим материалом. Их открытие стало одним из величайших научных открытий 20 века. Оно также преобразило поиск происхождения жизни, раскрыв невероятную сложность, которая скрывалась внутри живых клеток. Два «полюса» лестницы выстраивались молекулами-нуклеотидами. Эта структура объяснила, каким образом клетки копируют свою ДНК. Другими словами, она раскрыла, как родители делают копии своих генов и передают детям. Ключевой момент в том, что эту двойную спираль можно «распаковать».
Это обнажает генетический код , состоящий из последовательностей генетических оснований A, T, C и G, которые обычно заперты в ступеньках лесенки ДНК. Каждая цепочка затем используется как шаблон для воссоздания копии. С помощью этого механизма гены передавались от родителей к ребенку с самого начала жизни. Ваши гены были переданы древней бактерией — и на каждом шагу копировались, используя механизм, обнаруженный Криком и Уотсоном. Крик и Уотсон изложили свои выводы в статье в Nature в 1953 году. Следующие несколько лет биохимики пытались выяснить точно, какую информацию переносит ДНК и как эта информация используется в живых клетках. Впервые сокровенные тайны жизни были выставлены напоказ. Оказалось, что ДНК делает только одну работу. Ваша ДНК говорит клеткам, как делать белки: молекулы, которые выполняют важнейшие задачи. Без белков вы не могли бы переваривать пищу, ваше сердце остановилось бы и дышать было бы невозможно.
Но процесс использования ДНК для создания белков оказался чрезвычайно запутанным. Это стало большой проблемой для любого, кто пытается объяснить происхождение жизни, поскольку трудно представить, как что-то настолько сложное вообще могло появиться само по себе. Каждый белок представляет собой длинную цепь аминокислот, соединенных в определенном порядке. Последовательность этих аминокислот определяет трехмерную форму белка, а значит, и его назначение. Эта информация закодирована в последовательности оснований ДНК. Поэтому когда клетке нужно сделать конкретный белок, она считывает соответствующий ген в ДНК, чтобы получить последовательность аминокислот. Но есть нюанс. ДНК очень ценная, поэтому клетки предпочитают хранить ее в безопасности. И, наконец, процесс преобразования информации в этой цепи РНК в белок происходит в чрезвычайно сложной молекуле под названием «рибосома». Этот процесс протекает в каждой живой клетке, даже у простейших бактерий.
Он так же необходим для жизни, как еда и воздух. Любое объяснение происхождения жизни должно показать, как эта сложная троица — ДНК, РНК и белок рибосомы — появилась и начала работать. Клетки могут быть невероятно сложными И внезапно идеи Опарина и Холдейна уже кажутся наивными и простыми, а эксперимент Миллера, который произвел несколько аминокислот, и вовсе дилетантским. Его исследование было лишь первым шагом на длинной дороге. Что нам делать, чтобы найти органическую химию, которая будет делать все это за один раз? Первым человеком, который попытался прямо ответить на этот вопрос, стал английский химик Лесли Оргел. Оргел намеревался упростить задачу. В 1968 году, при поддержке Крика, он предположил, что первая жизнь не имела белков или ДНК. Вместо этого она почти полностью была сделана из РНК. В таком случае первичным молекулам РНК приходилось быть особенно универсальными.
С одной стороны, они должны были уметь создавать копии самих себя, по-видимому, используя тот же механизм образования пар, что и ДНК. Идея того, что жизнь началась с РНК, оказала колоссальное влияние. И разразила научную войну, которая продолжается по сей день. ДНК лежит в основе всех живых существ Предположив, что жизнь началась с РНК и кое-чего еще, Оргел по сути предположил, что один из важнейших аспектов жизни — ее способность воспроизводить себя — появился до всех остальных. В некотором смысле он предположил не только, как жизнь появилась: он предположил кое-что о самой сути жизни. Многие биологи согласны с идеей Оргела «сперва воспроизводство». В дарвиновской теории эволюции способность производить потомство находится в центре: это единственный способ для организма «выиграть» — оставить после себя детей. Но у жизни есть и другие функции, которые кажутся одинаково важными. Самая очевидная — это метаболизм: способность извлекать энергию из окружающей среды и использовать ее для поддержания своей жизни. Для многих биологов метаболизм определяет первичную суть жизни, а воспроизводство уже потом.
Поэтому начиная с 1960-х годов в рядах ученых, изучающих происхождение жизни, наблюдается раскол. Между тем третья группа поддерживает гипотезу о том, что сперва появился контейнер для ключевых молекул, который не позволял им расплываться. Другими словами, должна была быть клетка — как подчеркивали Опарин и Холдейн за несколько десятков лет до этого — возможно, закрытая мембраной из простых жиров и липидов. Все три идеи приобрели сторонников и сохранились до наших дней. Ученые страстно поддерживали свои идеи, иногда даже совершенно слепо. Неразбериха в рядах ученых достигла апогея, а журналисты, сообщающие о результатах, одни часто говорили, что «другие ученые тупые» или еще хуже. Благодаря Оргелу, идея начала жизни с РНК освежила движение к разгадке. Затем наступили 1980-е, а вместе с ними произошло открытие, которое в значительное степени подтвердило идею Оргела. РНК может быть ключом к началу жизни Часть третья: в поисках первого репликатора Эволюция важнее всего. Итак, после 1960-х годов ученые, пытающиеся понять происхождение жизни, разделились на три группы.
Некоторые из них были убеждены в том, что жизнь началась с формирования примитивных версий биологических клеток. Другие считали, что ключевым первым шагом была метаболическая система, а третьи сосредоточились на важности генетики и репликации. Эта последняя группа начала выяснять, как мог бы выглядеть первый репликатор, подразумевая, что он был сделан из РНК. Уже в 1960-е годы ученые имели основания полагать, что РНК была источником всей жизни. Это одноцепочечная молекула, поэтому, в отличие от жесткой, двухцепочечной ДНК, она может складывать себя в целый ряд различных форм. Похожая на оригами, складывающаяся РНК в целом напоминала по поведению белки. Белки тоже в основном представляют длинные цепи — только из аминокислот, а не нуклеотидов — и это позволяет им создавать сложные структуры. Это ключ к самой удивительной способности белков. Некоторые из них могут ускорять, или «катализировать», химические реакции. Такие белки известны как ферменты.
Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового. Множество ферментов можно найти у вас в кишках, где они разбивают сложные молекулы из пищи на простые типа сахаров, которые могут использовать ваши клетки. Без ферментов жить было бы невозможно. Лесли Оргел и Фрэнсис Крик начали кое-что подозревать. Если РНК может складываться как белок, возможно, она может и образовывать ферменты? Если бы это было правдой, то РНК могла бы быть оригинальной — и универсальной — живой молекулой, хранящей информацию, как это делает сейчас ДНК, и катализирующей реакции, как это делают некоторые белки. Это была прекрасная идея, но за десять лет она не получила никаких доказательств. Томас Чех, 2007 год Томас Чех родился и вырос в штате Айова. Еще ребенком он был очарован горными породами и минералами.
И уже в младших классах средней школы он заглядывал в местный университет и стучался в двери геологов с просьбой показать модели минеральных структур. Однако, в конце концов, он стал биохимиком и сосредоточился на РНК. В начале 1980-х годов Чех и его коллеги по Университету Колорадо в Боулдере изучали одноклеточный организм Tetrahymena thermophila. Часть ее клеточного механизма включает цепи РНК. Чех обнаружил, что отдельный сегмент РНК каким-то образом оказался отделен от остальных, словно его вырезали ножницами. Когда ученые убрали все ферменты и другие молекулы, которые могли выступать молекулярными ножницами, РНК продолжала выделываться. Так они нашли первый фермент РНК: короткий участок РНК, который способен вырезать себя из длинной цепи, частью которой является. Результаты работы Чех опубликовал в 1982 году. В следующем году другая группа ученых обнаружила второй фермент РНК, «рибозим» сокращение от «рибонуклеиновая кислота» и «энзим», он же фермент. Обнаружение двух ферментов РНК одного за другим указывало на то, что их должно быть много больше.
И так идея начала жизни с РНК начала выглядеть солидно. Как грудной имплантат сохранил жизнь женщины Однако имя этой идее дал Уолтер Гилберт из Гарвардского университета в Кембридже, штат Массачусетс. Как физик, восхищающийся молекулярной биологией, Гилберт также стал одним из первых сторонников секвенирования генома человека. Первая стадия эволюции, утверждал Гилберт, состояла из «молекул РНК, выполняющих каталитическую деятельность, необходимую для сборки самих себя в бульон нуклеотидов». Наконец, они нашли способ создавать белки и белковые ферменты, которые оказались настолько полезными, что в значительной степени вытеснили версии РНК и дали начало жизни, которую мы имеем. Вместо того, чтобы полагаться на одновременное образование десятков биологических молекул из первичного бульона, «одна за всех» молекула могла сделать всю работу. В 2000 году гипотеза «мира РНК» получила колоссальную порцию подтверждающих доказательств. Рибосома делает белки Томас Стейц провели 30 лет, изучая структуры молекул в живых клетках. В 1990-е годы он посвятил себя самой серьезной задаче: выяснить структуру рибосомы. Рибосома есть в каждой живой клетке.
Эта огромная молекула считывает инструкции в РНК и выстраивает аминокислоты, чтобы сделать белки. Рибосомы в ваших клетках построили большую часть вашего тела. Было известно, что рибосома содержит РНК. Но в 2000 году команда Стейца произвела подробное изображение структуры рибосомы, которое показало, что РНК была каталитическим ядром рибосомы. Это было важно, так как рибосома фундаментально важна для жизни и при этом очень древняя. Но с тех пор ученые начали сомневаться. С самого начала у идеи «мира РНК» было две проблемы. Могла ли РНК действительно выполнять все функции жизни сама по себе?
Если бы направление связей было случайным, вероятность этого составляла бы менее одной миллиардной. Следовательно, такой характер связей отражает последовательность постепенного добавления блоков в процессе эволюции молекулы, реконструированном исследователями. Таким образом, у истоков жизни мог стоять сравнительно простой рибозим — PTC-центр молекулы 23S-рРНК, к которому затем добавлялись новые блоки, совершенствуя процесс синтеза белка. Чаще всего постулируется необходимость агрегирующих РНК мембран или размещения РНК на поверхности минералов и в поровом пространстве рыхлых пород. В 1990-е годы А. Четвериным с сотрудниками была показана способность РНК формировать молекулярные колонии на гелях и твёрдых субстратах при создании им условий для репликации. Происходил свободный обмен молекулами, которые при столкновении могли обмениваться участками, что показано экспериментально. Вся совокупность колоний в связи с этим быстро эволюционировала [10]. После возникновения белкового синтеза колонии, умеющие создавать ферменты, развивались успешнее. Ещё более успешными стали колонии, сформировавшие более надёжный механизм хранения информации в ДНК и, наконец, отделившиеся от внешнего мира липидной мембраной, препятствующей рассеиванию своих молекул.
Однако было установлено, что рибозим, способный расщеплять другие молекулы, может возникнуть спонтанно благодаря нескольким консервативным элементам Ученые из Брукхейвенской национальной лаборатории опубликовали статью в журнале eLife, в которой сообщили об обнаружении новых доказательств гипотезы РНК-мира. По данной гипотезе, первые репликаторы на Земле представляли собой РНК-молекулы, способные размножаться без участия белковых ферментов. Исследователи столкнулись с проблемой - как такая молекула могла появиться из предшественников, не обладающих каталитической активностью. Источник фото: Фото редакции Однако было установлено, что рибозим, способный расщеплять другие молекулы, может возникнуть спонтанно благодаря нескольким консервативным элементам.
Гипотеза мира РНК
Дополнительным аргументом в пользу гипотезы существования древнего мира РНК стало обнаружение в 2019 году рибозы — сахара, входящего в состав РНК — в метеорите. Изотопный анализ показал внеземное происхождение этой рибозы. Авторы открытия предположили, что с помощью метеоритов рибоза могла попасть на раннюю Землю и послужить материалом для синтеза РНК.
Этот процесс позволял созданию молекул РНК, действующих как рибозимы типа hammerhead, способных к саморасщеплению, и, таким образом, начиналось их самовоспроизводство.
Репликация полимера осуществлялась за счет циклического изменения температуры между горячей и холодной фазами, что может указывать на то, что древние полимеры могли зависеть от таких циклов для своего размножения. Неорганические поверхности, вроде камней, также могли способствовать этому процессу размножения.
Но как обстояло дело до появления клеток и ДНК? В 1968 году химик Лесли Орджел опубликовал статью, в которой описал возможность существования жизни на Земле исключительно в виде рибонуклеиновых кислот, которые были способны передавать информацию безо всяких белков. Впоследствии эту идеи развили другие ученые.
Долгое время было неясно, как такая молекула могла возникнуть из своих предшественников, лишенных каталитической активности. Исследователи обнаружили, что рибозим, способный расщеплять другие молекулы, может возникнуть спонтанно, так как его функционирование требует всего нескольких классических компонентов. Однако оставалась проблема - как именно это свойство сохранилось в процессе биохимической эволюции. Чтобы прояснить этот вопрос, ученые разработали модель, имитирующую случайные разрывы в простых молекулах РНК без ферментативной активности.
Появилась новая гипотеза возникновения ДНК и РНК
гипотеза, с которой срослась проблема внезапного (для учёных особенно) возникновения жизни на совсем молодой, не оформившейся, подвергающейся. Основной гипотезой о появлении ДНК и первых клеток в настоящее время является гипотеза РНК-мира, согласно которой сначала происходило образование молекул РНК. В основном потому, что гипотеза мира РНК подкрепляется большим числом экспериментальных свидетельств, чем набрали её конкуренты. В основном потому, что гипотеза мира РНК подкрепляется большим числом экспериментальных свидетельств, чем набрали её конкуренты. Основной гипотезой о появлении ДНК и первых клеток в настоящее время является гипотеза РНК-мира, согласно которой сначала происходило образование молекул РНК.
Гипотеза РНК-мира для ЕГЭ по биологии
Новые доказательства гипотезы РНК-мира: ученые обнаружили способ самовоспроизведения молекул без участия белков. Мир РНК утверждает, что когда РНК сформировалась на Земле, она начала размножаться, а затем породила такие молекулы, как ДНК. Такой сценарий, по его мнению, больше соответствует результатам экспериментов и тому, что мы видим в современных организмах, чем гипотеза «РНК-мира». Новые доказательства гипотезы РНК-мира: ученые обнаружили способ самовоспроизведения молекул без участия белков. Мир РНК — это красивая гипотеза о самозарождении жизни, и вчера ее доказательство стало на шаг ближе. В ходе исследование специалисты усомнились в достоверности гипотезы РНК-мира, предполагающей то, что первыми способными к размножению структурами были РНК-молекулы.