Новости теория суперсимметрии

Киральная симметрия (от греч. cheir — рука) — инвариантность уравнений квантовой теории поля относительно преобразований, перемешивающих состояния частиц как с различными. Супервремя — понятие, возникшее как «игрушечная модель» в суперсимметричной теории поля — одномерный слепок суперпространства. Важные результаты в изучении низкоэнергетических следствий теории суперструн методами суперсимметричной теории поля получила в ходе цикла работ группа теоретиков из ОИЯИ. Суперсимметрия доминировала над физикой частиц десятилетиями, и исключила почти все альтернативные физические теории, выходившие за рамки СМ. Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной.

Экзамены суперсимметричной модели вселенной 1978

Суперсимметрия является математической зависимостью между элементами физических уравнений. Она была обнаружена в другой области физики, а ее применение привело к переименованию в теорию суперсимметричных струн или теория суперструн, популярным языком в середине 1970 годов. Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные. Без суперсимметрии уравнения приводят к физическим противоречиям, таким как бесконечные значения и воображаемые энергетические уровни. Поскольку ученые не наблюдали частицы, предсказанные суперсимметрией, она все еще является гипотезой. Эти частицы могли существовать в ранней вселенной, но так как она остыла, и после Большого взрыва энергия распространилась, эти частицы перешли на низкоэнергетические уровни. Другими словами, струны, вибрировавшие как высокоэнергетические частицы, утратили энергию, что превратило их в элементы с более низкой вибрацией. Ученые надеются, что астрономические наблюдения или эксперименты с ускорителями частиц подтвердят теорию, выявив некоторые из суперсимметричных элементов с более высокой энергией. Дополнительные измерения Другим математическим следствием теории струн является то, что она имеет смысл в мире, число измерений которого больше трех. В настоящее время этому существует два объяснения: Дополнительные измерения шесть из них свернулись, или, в терминологии теории струн, компактифицировались до невероятно малых размеров, воспринять которые никогда не удастся. Мы застряли в 3-мерной бране, а другие измерения простираются вне ее и для нас недоступны.

Важным направлением исследований среди теоретиков является математическое моделирование того, как эти дополнительные координаты могут быть связаны с нашими. Последние результаты предсказывают, что ученые в скором времени смогут обнаружить эти дополнительные измерения если они существуют в предстоящих экспериментах, так как они могут быть больше, чем ожидалось ранее. Понимание цели Цель, к которой стремятся ученые, исследуя суперструны — «теория всего», т. В случае успеха она могла бы прояснить многие вопросы строения нашей вселенной. Объяснение материи и массы Одна из основных задач современных исследований — поиск решения для реальных частиц. Теория струн начиналась как концепция, описывающая такие частицы, как адроны, различными высшими колебательными состояниями струны. В большинстве современных формулировок, материя, наблюдаемая в нашей вселенной, является результатом колебаний струн и бран с наименьшей энергией. Вибрации с большей порождают высокоэнергичные частицы, которые в настоящее время в нашем мире не существуют. Масса этих элементарных частиц является проявлением того, как струны и браны завернуты в компактифицированных дополнительных измерениях. Например, в упрощенном случае, когда они свернуты в форме бублика, называемом математиками и физиками тором, струна может обернуть эту форму двумя способами: короткая петля через середину тора; длинная петля вокруг всей внешней окружности тора.

Короткая петля будет легкой частицей, а большая — тяжелой. При оборачивании струн вокруг торообразных компактифицированных измерений образуются новые элементы с различными массами. Теория суперструн кратко и понятно, просто и элегантно объясняет переход длины в массу. Свернутые измерения здесь гораздо сложнее тора, но в принципе они работают также. Возможно даже, хотя это трудно представить, что струна оборачивает тор в двух направлениях одновременно, результатом чего будет другая частица с другой массой. Браны тоже могут оборачивать дополнительные измерения, создавая еще больше возможностей. Определение пространства и времени Во многих версиях теория суперструн измерения сворачивает, делая их ненаблюдаемыми на современном уровне развития технологии.

Ученые особенно наблюдали за прелестным кварком, который тяжелее и способен менять форму. Прелестный кварк обычно переходит в очарованный кварк, но в редких случаях может превращаться и в верхний кварк. Это могло стать расширением для стандартной модели, - объясняет сатклифф.

В выводах, опубликованных в журнале Nature Physics, измерения не показали никакого правостороннего вращения. В конечном счете ученые получили результат, который был в соответствии со стандартной моделью: прелестный кварк распадается только на верхний кварк, если имеет левосторонний спин. Это удар по суперсимметрии, который, однако, не сбрасывает теорию со счетов.

Её просто надо выбросить в корзину как выдуманную мифическую сущность для объяснения несуществующего всемирного вздутия Вселенной. И к вопросу суперсимметрии темная энергия вообще не имеет никакого отношения, в отличие от темной материи, которая гравитационно детерминируется, но больше никаких взаимодействий с барионной материей не имеет.

Я не намерен тут приводить ни нобелевскую лекцию П. Суть СРТ-теоремы в том, что в рамках квантовой теории поля Людерсом и Паули была доказана фундаментальная теорема о том, что "Квантовые системы инвариантны относительно СРТ- преобразования в любой последовательности. Максаков Александр Николаевич Материя это и есть энергия, эта энергия меняет состояние материи, вид, распад квантовый это выделение энергии. Может нам стоит исследовать эту энергию, св-ва её а не св-ва полученной материи! Что мы знаем о энергия?

Одной можно нагреть, другой подвинуть... Говорим по сути о потенциальной и киретической, вот не реагирует тёмная энергия, и не знаем ничего о тёмной матери... Тёмной материи-то с какой стати?! Это так, по мелочи, для начала...

Параметры пучка и мишени выбраны так, что мишень находится на грани взрыва. Чем больше энергия, тем больше «открывательная» способность. Но максимальная энергия ограничена размерами ускорителя. Хотя intensity frontier эксперименты не могут доставить такую же детальную картину, как energy frontier, они могут видеть эффекты, которые недоступны экспериментам в energy frontier, проводя измерения редких процессов с очень высокой точностью. LHC успешно работает, и сейчас обсуждается возможность строительства установки еще большего размера. На данном этапе определенности нет, все упирается в стоимость.

Решение может быть принято как через 5 лет, так и через 50. Для понимания: мы говорим про установки, стоимость которых колеблется в пределах от 5 до 20 млрд долларов и которые потребляют 0,5—1ГВт. Даже по меркам физики высоких энергий — это огромные затраты. Если мы делаем машину на порядок больше по энергии, то потребляемая мощность и стоимость будут в три-четыре раза выше. Гигаватт энергии расходует солидный город. А стоимость также зависит от того, что учитывать. В американской системе подсчета, которая учитывает все, стоимость будет раза в два больше, чем в европейской. В CERN финансирование фиксировано правительствами европейских стран. На этот бюджет они ничего заметно большего, чем LHC, построить не могут. До сих пор стоимости были более или менее посильными.

Tevatron в современных деньгах стоит шесть млрд долларов, у LHC — сопоставимая цифра. LHC в четыре раза длиннее, но за счет развития технологий, массового производства и накопленного опыта стоимость LHC получилась дешевле на метр, однако полные стоимости сопоставимы. Если говорить про строительство следующей машины, на мой взгляд, правильно было бы вкладываться в эксперименты с высокой светимостью. Их можно проводить на LHC его параметры позволяют это сделать , можно создавать новые установки на гораздо меньших энергиях. Главное, проводить прецизионные измерения, которые позволяют увидеть отклонения от предсказаний Стандартной модели. По величине этих отклонений можно судить, где находится «новая физика». Если по косвенным измерениям окажется, что для наблюдения следующих событий нужны колоссально высокие энергии, недостижимые для современной науки, то строить что-то с энергией больше LHC необходимости нет. Если же будет видно, что такая энергия нам доступна, тогда человечество будет создавать установку следующего уровня. Я думаю, что сейчас лучше вкладываться в точные эксперименты на относительно низкой энергии. Это только мое мнение, его далеко не все разделяют.

В нем с очень высокой точностью измеряется аномальный магнитный момент мюона. Это важно, так как сейчас мы наблюдаем расхождение между теорией и экспериментом. Замечу, что в теоретические предсказания аномального момента входит и вклад от сильного взаимодействия, который в настоящее время невозможно вычислить, основываясь на «чистой» теории. Обойти эти сложности можно, используя результаты других экспериментов. ВЭПП-2000 — коллайдер Института ядерной физики СО РАН в Новосибирске — предоставил необходимую информацию об адронных взаимодействиях, которая используется в вычислениях аномального магнитного момента мюона. Другой эксперимент — Mu2e — нацелен на поиск безнейтринного распада мюона. Он использует то же самое накопительное кольцо, что и g-2, и начнется сразу после окончания g-2, примерно через два года. Согласно Стандартной модели, мюон распадается на два нейтрино и электрон или позитрон в случае положительно заряженного мюона. Когда я учился в университете, все было просто. Есть электрон, к нему привязано электронное нейтрино.

Если у вас образовалось электронное нейтрино, вместе с ним должен образоваться электрон или позитрон в случае антинейтрино , но не может — мюон.

Экзамены суперсимметричной модели вселенной 1978

Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие, и суперсимметрии выдвигалась многими. Нужно построить теорию, которая будет инвариантна относительно преобразований суперсимметрии, а также относительно. Суперсимме́трия, или симме́трия Фе́рми — Бо́зе, — гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает. Важное предсказание суперсимметрии – существование суперрасширения теории гравитации, супергравитации, и суперсимметричного партнера гравитона – гравитино, частицы со спином 3/2.

Экзамены суперсимметричной модели вселенной 1978

Но, как это часто случается с научными исследованиями, история теории струн полна взлетов и падений. Сперва люди были озадачены тем, что она предсказывала существование частицы, которая движется быстрее света, так называемый «тахион». Это предсказание вошло в противоречие со всеми экспериментальными наблюдениями и бросило серьезную тень на теорию струн. Она предсказывает, что у каждой частицы есть свой суперпартнер и, по необычному совпадению, то же самое условие фактически устраняет тахион.

Другая необычная особенность в том, что теория струн требует существования десяти пространственно-временных измерений. В настоящее время нам известно лишь четыре: глубина, высота, ширина и время. Хотя это похоже на серьезное препятствие, предлагалось уже несколько решений, и в настоящее время это все видится скорее необычной особенностью, нежели проблемой.

Например, мы могли бы существовать в четырехмерном мире без какого-либо доступа к дополнительным измерениям. Однако различные компактификации привели бы к иным значениям физических констант и иным законам физики. М-теория Оставалась еще одна проблема, которая не давала покоя теоретикам струн того времени.

Тщательная классификация показала существование пяти различных последовательных теорий струн, и было непонятно, почему природа должна выбирать одну из пяти. И здесь в игру вступает М-теория.

Экспериментальная проверка[ править править код ] В 2011 году на Большом адронном коллайдере БАК была проведена серия экспериментов, в ходе которых проверялись фундаментальные выводы теории Суперсимметрии, а также верность описания ею физического мира. Как заявила 27 августа 2011 года профессор Ливерпульского университета Тара Ширс [en] , эксперименты не подтвердили основные положения теории [16] [17].

При этом Тара Шиарс уточнила, что не нашла подтверждения и упрощённая версия теории суперсимметрии, однако полученные результаты не опровергают более сложный вариант теории. К концу 2012 года на детекторе LHCb Большого адронного коллайдера была накоплена статистика по распаду странного B-мезона на два мюона [18]. Таким образом, вероятность этого крайне редкого события статистически достоверна и хорошо согласуется с предсказанием Стандартной модели. Результаты проверки электрического дипольного момента электрона 2013 также не подтвердили варианты суперсимметричных теорий [20].

Тем не менее суперсимметричные теории могут быть подтверждены другими экспериментами, в частности, наблюдениями за распадом нейтрального B0-мезона. После перезапуска весной 2015 года, БАК планирует начать работу на мощности 13 ТэВ и продолжит поиск отклонений от статистических предсказаний Стандартной модели. Информация в этой статье или некоторых её разделах устарела.

Фактически, гипотеза суперсимметрии позволяет при помощи преобразований связать воедино вещество и излучение. На сегодня эта гипотеза не была подтверждена экспериментально. Для того чтобы фактически проверить ее, существует несколько возможностей.

Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит последовательному образованию других частиц. Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение «недостатка» энергии при определенных типах столкновений. Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц. По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии. Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии.

Что тогда? Оказывается, что довольно легко получить такой же мир, как наш, где суперпартнёры известных части существуют, просто стали тяжелее — слишком тяжёлыми для того, чтобы мы обнаружили их в экспериментах. Вы видите, что нарушение суперсимметрии то, что она прячется и её нелегко обнаружить увеличило масштаб масс всех суперпартнёров так, что вся массовая шкала находится выше массы верхнего кварка. И это не так искусственно или глупо, как кажется — математика с готовностью принимает этот эффект. Существует множество точных примеров того, как это может произойти — но их слишком много для того, чтобы мы догадались, какой из них наиболее вероятен. И это не единственная схема, способная возникнуть при нарушении суперсимметрии!

Существует большое количество других возможностей, которые я буду называть вариантами суперсимметрии. Но представленный мною вариант — наиболее популярный среди теоретиков и экспериментаторов, особенно в Европе в США он менее популярен, про другие места я не знаю. Этой популярности есть веские причины; оказывается, что существует несколько независимых способов получить схему, сходную с этой. Однако популярность всегда порождает предвзятость, а нам необходимо рассматривать все возможности, не делая предположений касательно этих аргументов. Но если суперпартнёры очень массивные, не может ли получиться так, что мы не сможем произвести ни одного из них в ближайшие десятилетия или даже столетия? Не занимаемся ли мы подсчётом количества ангелов, способных уместиться на кончике иглы?

Из всего вышеизложенного пока действительно следует, что такой риск существует. Однако есть и более тонкий аргумент в пользу наличия суперсимметрии, благодаря которому у многих физиков есть надежда на то, что все эти суперпартнёры находятся в пределах досягаемости Большого адронного коллайдера. Это следует из того факта, что суперсимметрия решила бы проблему иерархии — одну из величайших загадок нашего мира. Проблема иерархии Важным свойством природы, ставящим в тупик учёных, а в их числе и меня, является свойство иерархии — огромной разницы между свойствами слабого ядерного взаимодействия и гравитации. Эту иерархию можно описать несколькими разными способами, каждый из которых упирает на одно из её свойств. Например: Масса мельчайшей возможной чёрной дыры определяет то, что известно, как планковская масса.

В связи с этим существует огромная иерархия масштабов массы между слабым ядерным взаимодействием и гравитацией. Сталкиваясь с таким огромным числом, как 10 000 000 000 000 000, десять квадриллионов, физики естественным образом задают вопрос: откуда оно взялось? И у него может быть довольно интересное объяснение. Но пытаясь найти это объяснение в 1970-х, физики увидели существование серьёзной проблемы, даже парадокса, скрывающегося за этим числом. Эта проблема, известная сейчас, как проблема иерархии, связана с размером ненулевого поля Хиггса, которое в свою очередь определяет массу частиц W и Z. Но оказывается, что из квантовой механики следует, что такой размер поля Хиггса нестабилен, это нечто вроде аналогия неполная!

Из известной нам физики, из квантового дрожания, вроде бы следует, что для поля Хиггса должно существовать два естественных значения — по аналогии с двумя естественными местами для вазы, либо твёрдо стоящей на столе, либо валяющейся разбитой на полу. И получается, что поле Хиггса вроде бы должно быть либо нулевым, или оно должно быть сопоставимым по размеру с планковской энергией, в 10 000 000 000 000 000 больше наблюдаемого значения. Почему же его значение получается ненулевым и таким крохотным, таким, на первый взгляд, неестественным?

Эксперимент на Большом адронном коллайдере опроверг современную теорию мироздания

На днях теория суперсимметрии получила еще один удар от большого адронного коллайдера (бак. Еще не все потеряно, есть усложненные теории суперсимметрии, по которым суперсимметричных частиц так просто не обнаружишь. Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. Лектор рассказывает о теории суперструн, голографических чёрных дырах, столкновениях параллельных вселенных и о других интересных явлениях. Иконка канала Математические теоремы: между теорией и практикой.

Концепция развивается

  • Российский физик — о поисках тёмной материи и её роли во Вселенной
  • Суперсимметрия | это... Что такое Суперсимметрия?
  • Нобелевская премия по физике 2008 года. Нобелевская асимметрия
  • Доказательство суперсимметрии полностью изменит наше понимание Вселенной
  • Теория суперсимметрии

Неполная теория

  • Концепция развивается
  • 🔸 Доказательство суперсимметрии полностью изменит наше понимание Вселенной🔸
  • Доказательство суперсимметрии полностью изменит наше понимание Вселенной
  • Суперсимметрия под вопросом

Вы точно человек?

Поиски суперсимметрии на коллайдере принесли новую интригу Несмотря на кажущуюся катастрофу, изначальная теория суперсимметрии даёт нам простой и правдоподобный выход из ситуации.
Теория суперструн популярным языком для чайников Сформулированная в 1973 году, теория Суперсимметрии предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками.
Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи Теория струн (теория суперструн) и суперсимметрия претендуют на роль Единой Теории Поля.
Доказательство суперсимметрии полностью изменит наше понимание Вселенной Так же существуют и более классические теории, согласно которым бозон Хиггса является сложной частицей, основанной на новом типе симметрии, суперсимметрии.
Адронный коллайдер подтвердил теорию суперсимметрии Суперсимметрия, возникшая независимо в теории струн, «убила» тахион.

Физики открыли пятую силу природы. Главное об эксперименте с мюоном g-2

Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить материю во взаимодействие или в излучение , и наоборот. По состоянию на начало 2008 года суперсимметрия является физической гипотезой, не подтверждённой экспериментально. Совершенно точно установлено, что наш мир не является суперсимметричным в смысле точной симметрии, так как в любой суперсимметричной модели фермионы и бозоны, связанные суперсимметричным преобразованием, должны обладать одинаковыми массой, зарядом и другими квантовыми числами за исключением спина. Данное требование не выполняется для известных в природе частиц.

Суперсимметрия будет означать, что все эти три силы будут обладать одной и той же силой на очень высоких энергетических уровнях.

Многомерное пространство Калаби-Яу В частности, суперсимметрия может укрепить теорию струн. Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. Теория струн остается одним из ведущих кандидатов на «теорию всего», которая объединит всю физику. Тем не менее проверить ее экспериментально чрезвычайно трудно. Тем не менее открытие суперсимметрии по крайней мере даст апологетам теории струн знать, что они идут в правильном направлении.

Как разлетаются бозоны Физики думают, что мы найдем доказательства суперсимметрии? Несмотря на десятилетия поисков, никто не нашел никаких доказательств суперсимметрии. Впрочем, великие теории открывались не за два-три года. К примеру, почти полвека понадобилось на то, чтобы открыть бозон Хиггса с момента теоретического предположения его существования. Потому, хотя мы и не видим доказательств суперсимметрии, эта теория остается очень мощной.

Тем не менее Вселенной абсолютно все равно, насколько идеальными наши теории ни казались бы, говорит Линкольн. Многие физики говорят, что мы должны были найти доказательства суперсимметричных частиц уже в первый запуск БАК, поэтому теория вполне может быть не ахти. Но только потому, что мы не видели каких-либо суперсимметричных частиц, еще не означает, что их нет. Может быть, есть что-то в том, как суперсимметрия проявляется, чего мы пока не понимаем. Может, нужен более мощный коллайдер, чтобы частицы-суперпартнеры проявили себя.

Мы не узнаем этого, пока БАК не заработает.

Поиск суперпартнёров обычных частиц — одна из основных задач современной физики высоких энергий. Ожидается, что Большой адронный коллайдер, запуск которого планируется осенью 2008 года [1], сможет открыть и исследовать суперсимметричные частицы, если они существуют, или поставить под большое сомнение суперсимметричные теории, если ничего не будет обнаружено. Виктор Алексеевич Мудрец 14295 11 лет назад Суперсимметрия, это просто! Гляньте на себя в зеркало - вы совершенно симметричны! Ваша правая сторона симметрична левой.

Разумеется, если бы суперсимметрия в природе соблюдалась в точности, мы бы сразу знали и массы всех суперпартнеров. Они были бы попросту идентичны массам соответствующих известных частиц. Однако ни одну частицу—суперпартнер до сих пор обнаружить не удалось. Это свидетельствует о том, что суперсимметрия, даже если она реально существует в природе, не может быть строгой. Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими. Согласно теории нарушенной суперсимметрии у каждой частицы по—прежнему есть суперпартнер, но массы этих суперпартнеров отличаются от масс оригинальных частиц Стандартной модели. Однако если суперсимметрия нарушена слишком сильно, она не сможет разрешить проблему иерархии, потому что мир при сильно нарушенной симметрии выглядит в точности так же, как если бы этой симметрии вовсе не было. Суперсимметрия должна быть нарушена ровно настолько, чтобы мы до сих пор не могли наблюдать ее признаков, но чтобы масса Хиггса была тем не менее защищена от больших квантово—механических вкладов, которые сделали бы ее слишком большой. Это говорит о том, что суперсимметричные частицы должны иметь массы масштаба слабого взаимодействия. Будь они легче — и мы бы их уже обнаружили; будь они тяжелее — и следовало бы ожидать более тяжелого хиггса. Мы не можем точно сказать, какими будут эти массы, ведь и масса Хиггса известна нам лишь очень приблизительно. Но мы знаем, что если эти массы окажутся слишком большими, то проблема иерархии никуда не денется. Поэтому мы делаем вывод о том, что если суперсимметрия существует в природе и решает проблему иерархии, то должно существовать множество новых частиц с массами в диапазоне от нескольких сотен гигаэлектронвольт до нескольких тераэлектронвольт. Это именно тот диапазон, в котором БАК должен будет вести поиск. При энергии столкновения 14 ТэВ коллайдер должен выдавать эти частицы даже с учетом того, что кваркам и глюонам, порождающим при столкновении новые частицы, достается лишь небольшая часть исходной энергии протонов. Проще всего будет получить на БАКе суперсимметричные частицы, несущие сильный или цветовой заряд. Эти частицы при столкновении протонов или, точнее, при столкновении кварков и глюонов в них могут рождаться в изобилии. Иными словами, при штатной работе БАКа могут возникать новые суперсимметричные частицы, участвующие в сильном взаимодействии. Если это так, они оставят в детекторах очень заметные и характерные следы. Эти сигнатуры — экспериментальные свидетельства, оставляемые частицей — зависят от того, что происходит с частицей после возникновения. Большинство суперсимметричных частиц будут быстро распадаться. Причина в том, что, как правило, для каждой такой тяжелой частицы существует более легкая частица такая как частицы Стандартной модели с точно таким же полным зарядом. Если это так, то тяжелая суперсимметричная частица распадется на частицы Стандартной модели таким образом, чтобы сохранился первоначальный заряд, и эксперимент обнаружит только частицы Стандартной модели. Вероятно, этого недостаточно, чтобы распознать суперсимметрию. Однако почти во всех суперсимметричных моделях суперсимметричная частица не может распадаться исключительно на частицы Стандартной модели. После ее распада должна остаться другая более легкая суперсимметричная частица. Причина в том, что суперсимметричные частицы появляются или исчезают только парами. Поэтому на месте распада одной суперсимметричной частицы должна остаться другая суперсимметричная частица. Следовательно, самая легкая из таких частиц должна быть стабильной. Эта самая легкая частица, которой не на что распадаться, известна физикам как легчайшая суперсимметричная частица, или LSP. С экспериментальной точки зрения распад суперсимметричной частицы характерен тем, что даже после завершения всех процессов легчайшая из нейтральных суперсимметричных частиц должна остаться. Космологические ограничения говорят о том, что LSP не несет никаких зарядов и потому не будет взаимодействовать ни с одним из элементов детектора. Это означает, что в каждом случае возникновения и распада любой супер- симметричной частицы экспериментальные результаты покажут, что импульс и энергия не сохраняются, их часть куда? Частица LSP уйдет незамеченной и унесет свои импульс и энергию туда, где их невозможно будет зарегистрировать; сигнатурой LSP будет дефицит энергии. Предположим, к примеру, что в результате столкновения возникает скварк — суперсимметричный партнер кварка. На какие частицы он распадется, зависит от его массы и от того, какие имеются более легкие частицы. Одним из возможных вариантов распада будет превращение скварка в обычный кварк и легчайшую суперсимметричную частицу рис.

Поиски суперсимметрии на коллайдере принесли новую интригу

Для завершения обоснования суперсимметрии природы инфраструктурной динамикой -позитрония в «условиях резонанса» остаётся напомнить о возможности представления. Важное предсказание суперсимметрии – существование суперрасширения теории гравитации, супергравитации, и суперсимметричного партнера гравитона – гравитино, частицы со спином 3/2. Так же существуют и более классические теории, согласно которым бозон Хиггса является сложной частицей, основанной на новом типе симметрии, суперсимметрии. Суперсимметрия важна для теории струн, но наличие суперсимметрии в природе само по себе не означает, что последняя — правильная физическая теория. Так же существуют и более классические теории, согласно которым бозон Хиггса является сложной частицей, основанной на новом типе симметрии, суперсимметрии. Однако Тара Шиарс отказалась полностью отвергнуть теорию суперсимметрии и заметила, что не нашли подтверждения выводы ее упрощенной версии, а не более сложного варианта.

С теорией суперсимметрии придётся расстаться

Суперсимметрия и проблема калибровочной иерархии / Хабр Еще не все потеряно, есть усложненные теории суперсимметрии, по которым суперсимметричных частиц так просто не обнаружишь.
Супер ассиметричная модель вселенной попович Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной.

Похожие новости:

Оцените статью
Добавить комментарий