Новости плазменный реактор

Нестабильность плазмы, особенности переноса плазмы и потери из-за волн и турбулентности были серьезной проблемой для удержания плазмы в реакторах термоядерного синтеза.

Термоядерный реактор KSTAR смог удержать раскалённую плазму в течение 30 секунд

В этом проекте ученые занимаются расчетами пристеночной плазмы, а именно вопросами, как и какие примеси будут поступать в реактор, как будет перераспределяться мощность. Плазма в реакторе ИТЭР должна быть в десять раз горячее солнечного ядра, а температура в его криостате в 30 раз ниже, чем в морозильнике. Плазменный физический реактор – сложное оборудование, обеспечивающее нормальное выполнение химической реакции.

Глава российского агентства ИТЭР рассказал о планах по созданию демореактора

Плазменный пиролиз, по мнению разработчиков, поможет сделать переработку тяжелой нефти более экономичной и экологически чистой. Также планируем исследовать углеродные наноструктуры для использования их в качестве катализаторов и адсорбентов», — подчеркнул руководитель проекта, ведущий научный сотрудник НГТУ Евгений Титов.

Хотя подход Z-пинч тестировался еще в 1950-х, исследователи столкнулись с проблемой быстрого угасания плазмы. Zap заявляет, что решила ее с помощью стабилизации сдвигового потока — инновации, которая теоретически может продлить срок жизни Z-пинч плазмы почти до бесконечности. Однако выбранное Zap топливо — тритий, безумно дорогое. Несмотря на экономию на сверхпроводящих магнитах, этот факт может стать препятствием для коммерциализации технологии, если не будет решена проблема быстрого и дешевого производства трития, или не найдена подходящая замена.

В термоядерном реакторе такого сценария быть не может. А реакция синтеза быстро останавливается при выключении питания. Фактически в качестве топлива используется вода, в которой содержится дейтерий. А тритий можно получить из лития непосредственно в процессе работы термоядерного реактора или как побочный продукт работы ядерных реакторов», — добавил эксперт. По его словам, США традиционно были лидерами в коммерческих технологиях ядерной энергетики.

В нём не только будет генерироваться термоядерная мощность, но ещё и будут технологии по переработке с термоядерной мощности в электричество, тепловую и так далее", — сказал Красильников на Международном форуме-диалоге "Наука за мир и развитие". В основу реактора положена разработанная советскими и российскими учёными установка токамак, которая считается наиболее перспективным устройством для управляемого термоядерного синтеза. Энергетическую установку строят на юге Франции, недалеко от исследовательского центра Кадараш.

Выбор сделан - токамак плюс

Компания «АЭМ-Спецсталь» (машиностроительный дивизион Росатома) приступила к ковке партии заготовок для корпуса реактора первого энергоблока АЭС «Пакш-2». Президент НИЦ «Курчатовский институт» Михаил Ковальчук сообщил об успешном получении первой термоядерной плазмы на токамаке Т-15МД (это модифицированная версия комплекса. В плазменном реакторе производится плавление практически любых материалов, после чего из них получаются полезные композиты. Личным рекордом по длительному удержанию разогретой плазмы может похвастаться термоядерный реактор под названием Experimental Advanced Superconducting Tokamak (EAST. В комплексе термоядерного синтеза NIF обнаружили аномальные энергии ионов плазмы. Плазменный двигатель — разновидность электрического ракетного двигателя (ЭРД), расходуемое вещество которого получает ускорение в состоянии плазмы.

В России протестировали самую мощную плазменную установку в мире

Реактор ST40. Их еще предстоит преодолеть, прежде чем его можно будет рассматривать в качестве практического источника энергии, отмечают ученые. Посмотрите на лучшие изобретения мира по версии Time: 55фотографий.

Чтобы изучать реакции синтеза и отрабатывать основные принципы управления реактором, сейчас строят Международный термоядерный экспериментальный реактор ИТЭР во Франции. Он поможет продемонстрировать возможность коммерческого использования реактора. Токамак Глобус-М2 Токамаки представляют собой тороидальную камеру похожую на бублик с магнитными катушками. Внутрь такой конструкции помещают газ, например, изотопы водорода тритий и дейтерий, после чего нагревают до миллионов градусов Цельсия. При этом образуется газ из заряженных частиц ионов и электронов — плазма. Разогретые ионы сталкиваются друг с другом, благодаря чему выделяется энергия, превышающая затраченные на нагревание ресурсы.

Этот избыток можно использовать потом в промышленности и энергетике. Однако из-за очень высокой температуры плазма не может удерживаться стенками токамака, поэтому в установке создается специальное магнитное поле, которое отделяет плазму от стенок и позволяет контролировать термоядерную реакцию. Основная цель ученых — создать плазму с достаточно высоким значением тройного произведения синтеза: плотностью и температурой плазмы, а также временем удержания энергии, обозначающим, насколько хорошо тепловая энергия удерживается в плазме.

В радиочастотных двигателях с магнитным соплом последнее направляет и ускоряет плазму, позволяя космическим кораблям создавать тягу. Технология, использующая электрическую тягу, демонстрирует большой потенциал для открытия новой эры космических путешествий. Однако дальнейшему развитию мешала так называемая проблема «отрыва плазмы», объясняют ученые. Иллюстрация работы плазменного двигателя с магнитным соплом. Изображение : Kazunori Takahashi, Tohoku University Поскольку силовые линии магнитного поля всегда образуют замкнутые петли, те, которые находятся внутри магнитных сопел, неизбежно возвращаются к конструкции двигателя. По этой причине поток плазмы должен отрываться от магнитного сопла.

Уникальную ресурсо- и энергосберегающую технологию переработки твёрдых бытовых, техногенных и медицинских отходов разработали в ВСГУТУ. В плазменном реакторе производится плавление практически любых материалов, после чего из них получаются полезные композиты. На Совете по науке и инновациям учёные предложили использовать передвижной агрегат в местах массового отдыха туристов, где скапливается наибольшее количество пластикового мусора.

НИУ МЭИ запустил одну из мощнейших в мире плазменных установок для будущего реактора ИТЭР

Прорыв в физике: ИИ успешно управляет плазмой в эксперименте по ядерному синтезу - RW Space После первого запуска британский термоядерный реактор выпустил расплавленную массу заряженного газа.
Британский термоядерный реактор сгенерировал первую плазму Почти год назад корейский термоядерный реактор KSTAR побил рекорд температуры удерживаемой плазмы.

Актуальные торги

  • Zap Energy зажгла в прототипе термоядерного реактора нового поколения FuZE-Q первую плазму / Хабр
  • В МИФИ начнутся испытания материалов для защиты стенки термоядерного реактора - «Ведомости. Наука»
  • Металлурги Росатома начали изготовление реакторной установки для АЭС «Пакш-2» в Венгрии
  • Ученые: Уран пахнет тухлыми яйцами
  • Россия отправила во Францию катушку для получения плазмы в термоядерном реакторе

Прорыв в физике: ИИ успешно управляет плазмой в эксперименте по ядерному синтезу

По сравнению с преобладающими подходами к синтезу, технология Zap Energy невероятно элегантна и не требует никаких сверхпроводящих магнитов или мощных лазеров. Более простой метод производства термоядерного синтеза означает возможность создания меньших, менее сложных и легче масштабируемых систем. В Fusion Z-Pinch Experiment FuZE используется набор инструментов для получения экспериментальных данных при создании компактных термоядерных реакторов. Концептуальная основа технологии была разработана в Вашингтонском университете UW совместно с сотрудниками из Ливерморской национальной лаборатории Лоуренса. Нельсон Brian A. Nelson объединились с предпринимателем и инвестором Бенджем Конвеем Benj Conway , чтобы в 2017 году стать соучредителями Zap Energy, ускорить, и, в конечном счёте, коммерциализировать исследование. Сейчас в компании работает более 60 сотрудников в Сиэтле, Эверетте и Мукилтео, штат Вашингтон.

Александр Емельяненков Какие у термоядерной энергетики преимущества и когда, наконец, человек сумеет ее "приручить"? Что такое токамак с реакторными технологиями? Где уже сейчас способны зажечь мини-Солнце на Земле? На эти и другие вопросы в День работника атомной промышленности отвечает директор направления научно-технических исследований и разработок госкорпорации "Росатом", вице-председатель международного Совета ИТЭР, член-корреспондент РАН Виктор Ильгисонис. Фото: ГК "Росатом" К словам "Росатом" - корпорация знаний" успели привыкнуть не только поклонники известной ТВ-программы, но и те, кто предпочитает телеэкрану смартфон или ноутбук. С историей Атомного проекта понятно. А что сегодня определяет передний край науки в отрасли? Виктор Ильгисонис: Если кратко - то значение для страны и экономическая эффективность. Критерием служит потребность страны в решении конкретной проблемы, чтобы сосредоточить на ней мощь "Росатома" - техническую и интеллектуальную. Но браться стоит только за высокотехнологичные и наукоемкие направления.

Наши профессиональные компетенции слишком дороги, чтобы расходовать их на обычные бизнесы, как бы прибыльны они ни были. Одно из таких направлений - термоядерные исследования и плазменные технологии. Это третий федеральный проект внутри РТТН - комплексной программы развития техники, технологий и научных исследований в области использования атомной энергии. Он третий по важности, срочности, ожиданиям? Виктор Ильгисонис: Он просто один из пяти, по порядку. Не следует придавать нумерации какое-либо значение. Но если говорить о числе вовлеченных в проект организаций вне контура "Росатома", то термоядерный проект - однозначно первый. Его масштабность, широта охвата, многообразие ожидаемых результатов и их применений в значительной степени обусловили причисление всей программы РТТН к числу национальных проектов. Самой дорогостоящей частью "термоядерного" федерального проекта, как и всей программы РТТН, принято считать модернизацию существующей инфраструктуры и создание новых экспериментальных установок. Что тут в приоритетах?

Где и на каких площадках уже ведутся такие работы? Виктор Ильгисонис: В действующей версии программы главный приоритет - это вывод на рабочие режимы токамака Т-15МД в Национальном исследовательском центре "Курчатовский институт", который должен быть оснащен различными системами дополнительного нагрева плазмы, диагностики, сбора и обработки данных, генерации тока и другими современными элементами.

Эффект от каждого минимального изменения в составе сплава или в технологии его обработки должен быть проверен в условиях, приближенных к реакторным. Для этого берется специальный стальной автоклав с толстыми стенками, в который заливается определенное количество воды и помещаются исследуемые образцы новых материалов.

После этого автоклав герметизируется и устанавливается в печь, в которой нагревается до эксплуатационной температуры оболочек твэлов. А вот дальше придется запастись терпением, потому как прежде, чем можно будет сделать какой-то вывод о коррозионной стойкости исследуемых образцов, должен пройти не один месяц. Ведь если даже в активной зоне реактора коррозия оболочек твэлов длится годами, то что уж говорить про условия водной среды автоклава, где, в отличие от реактора, нет химически активных продуктов радиолиза воды и реакторного облучения, ускоряющего коррозию. Очевидно, что в условиях, когда каждый шаг разработчика должен верифицироваться испытаниями, длящимися месяцами, невозможно говорить об интенсивном развитии реакторных материалов.

Поэтому со стороны материаловедов давно назрел запрос на какой-то экспресс-метод коррозионных испытаний. ТВС, загруженная в активную зону реактора Как можно ускорить процесс? Но как ускорить коррозионные испытания материалов, если даже в сверхагрессивной среде водного теплоносителя процесс коррозии оболочек твэлов занимает годы? Что может быть еще агрессивнее?

Это плазма. Если поместить испытательный образец в частично ионизованную низкотемпературную плазму, то поток химически активных ионов и радикалов, контактирующих с поверхностью объекта, окажется даже более интенсивным, чем это бывает в активной зоне легководного реактора. Если зажечь плазму в парах воды, то на образец, помещенный в нее, будет воздействовать тот же самый ансамбль частиц, что и в водном теплоносителе реактора, но при этом гораздо интенсивнее за счет большего вклада от ионов и радикалов.

Более простой метод производства термоядерного синтеза означает возможность создания меньших, менее сложных и легче масштабируемых систем. В Fusion Z-Pinch Experiment FuZE используется набор инструментов для получения экспериментальных данных при создании компактных термоядерных реакторов. Концептуальная основа технологии была разработана в Вашингтонском университете UW совместно с сотрудниками из Ливерморской национальной лаборатории Лоуренса. Нельсон Brian A. Nelson объединились с предпринимателем и инвестором Бенджем Конвеем Benj Conway , чтобы в 2017 году стать соучредителями Zap Energy, ускорить, и, в конечном счёте, коммерциализировать исследование. Сейчас в компании работает более 60 сотрудников в Сиэтле, Эверетте и Мукилтео, штат Вашингтон. Команда Zap Energy добилась быстрого прогресса с тех пор, как эта технология вышла за пределы лаборатории, особенно с недавним ростом команды и инвестиций».

Заказ продукции/услуги

  • Новый покупатель
  • Российские ученые масштабировали установку плазменного пиролиза нефти
  • Что еще известно:
  • Что такое токамак?
  • Международный экспериментальный термоядерный реактор — Википедия

Преимущества и недостатки термоядерных реакторов

  • Содержание
  • На российском токамаке Т-15МД получена первая термоядерная плазма
  • Металлурги Росатома начали изготовление реакторной установки для АЭС «Пакш-2» в Венгрии
  • Как плазменные технологии помогут ускорить развитие ядерных реакторов | Официальный сайт НИЯУ МИФИ

Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца

В России также проводятся исследования по удержанию плазменных разрядов при сверхвысоких температурах. На плазменных установках в лабораториях НИЯУ МИФИ начнется цикл испытаний материалов, которые помогут защитить внутреннюю стенку реактора ITER. Демонстрационный термоядерный реактор (ДЕМО) станет следующим этапом в подготовке к использованию термоядерной энергии в промышленных масштабах.

В плазменном фокусе: «Росатом» и МИФИ разработали термоядерный мини-реактор

Главные сахалинские новости за день от Оба типа реакторов имеют свои преимущества. Токамаки лучше поддерживают высокую температуру плазмы, а стеллараторы лучше обеспечивают ее стабильность. Владелец реактора — Институт физики плазмы при Академии наук КНР.

Похожие новости:

Оцените статью
Добавить комментарий