Новости теория струн кратко и понятно

В своей основе Теория струн отрицает теорию Большого взрыва и утверждает, что Вселенная существовала всегда. •Краткая история теории струн.

Современное состояние теории струн

Этот успех убедил многих в том, что теория струн дает глубочайшее понимание того, как устроена Вселенная. Используя метод проб и ошибок, можно было бы оценить мощь суперкомпьютера, но для того, чтобы достичь подлинного мастерства, потребовались бы энергичные и продолжительные усилия. Признаки мощи компьютера, как проблески способности теории струн давать объяснения, могут быть причиной очень сильной мотивации к овладению всем устройством. Замечание Виттена и схожие высказывания других специалистов в этой области указывают на то, что могут пройти десятилетия или даже столетия, прежде чем теория струн будет полностью разработана и осознана. Это вполне может оказаться правдой. В действительности математический аппарат теории струн столь сложен, что сегодня никто даже не знает точных уравнений этой теории. Вместо этого физики используют лишь приближенные варианты этих уравнений, и даже эти приближенные уравнения столь сложны, что пока поддаются только частичному решению.

По всему миру физики разрабатывают новые мощные методы, далеко превосходящие использовавшиеся до сих пор многочисленные приближенные методы, коллективно собирая вместе разрозненные элементы головоломки теории струн с обнадеживающей скоростью. Удивительно, но эти разработки дают новые средства для пересмотра некоторых основных положений теории, которые считались устоявшимися. Например, при взгляде на рис.

Теория струн не единственная претендует на звание теории всего. Расскажите про ее основных конкурентов. Пожалуй, лучше всего развита петлевая квантовая гравитация. Чтобы понять основную идею, нужно сделать шаг назад. Необходимо понимать, что изначально физики пытались применить к уравнениям теории относительности стандартный подход квантовой механики, то есть проквантовать их так же, как, например, электромагнитное взаимодействие. Из этого ничего не получилось. Если обратиться к теории струн, то «квантованная» в некотором смысле гравитация там появляется сама собой. Она оказывается следствием фундаментальных свойств самой теории, нам не приходится насильно склеивать теорию относительности и квантовую механику. Петлевая же гравитация занимается именно этим, то есть пытается склеить ТО и квантовую механику. Для этого уравнения Эйнштейна переписываются совсем в другом но эквивалентном исходному, это важно виде, в совершенно других переменных. При этом оказывается, что в таком виде уравнения уже поддаются квантованию, пусть и не совсем классическому. Полученные при этом квантовые переменные могут пониматься как петли — отсюда и название. Насколько эти петли связаны с нашими струнами и связаны ли вообще все-таки звучит похоже , мы пока не знаем. Петлевая гравитация, конечно, менее экзотична, чем теория струн. В ней не требуются дополнительные измерения, не нужна суперсимметрия. То есть их можно добавить, но сами по себе они не возникают. Тут, однако, возникает тонкий момент — уверен, что специалисты по петлевой квантовой гравитации со мной не согласятся. Смотрите, стандартная Ньютонова механика получается как предел квантовой при устремлении к нулю некоторого параметра. Традиционно считается, что квантование — это обратный процесс, то есть построение теории, зависящей от параметра, которая, при стремлении этого параметра к нулю, дает нам доквантовую теорию. Так вот, на самом деле не очень понятно, получаются ли из петлевой квантовой гравитации обычная квантовая механика и теория относительности при переходе к некоторому пределу? Специалисты по этой теории считают, что получается и никакой проблемы тут нет. И возможно, они правы, а я нет — все-таки я не разбираюсь в деталях теории так, как они. Но издалека лично мне кажется, что там все не очень корректно. А есть какие-то предсказания петлевой гравитации, которые отличались бы от предсказаний теории струн? Желательно, чтобы эти предсказания еще и можно было проверить. Я думаю, если бы перед вами сидел специалист по петлевой квантовой гравитации, ответ был бы иным. Я ни в коем случае не утверждаю, что кто-то там нечестен, просто речь идет скорее о том, что у людей есть разные воззрения на то, что считать предсказанием и что считать фальсифицируемостью конкретной теории. Как бы то ни было, но я смею утверждать, что ни у кого из этих специалистов нет утверждения такого уровня: если не выполнено некоторое X, то вся теория не верна. Я никогда не слышал от них такого утверждения и думаю, они не могут его сделать. Мы, правда, тоже не можем ничего такого заявить на данном уровне развития технологии — в этом смысле мы с ними в равных условиях. Есть ли какие-нибудь еще теории? За годы их было довольно много скажем, причинная динамическая триангуляция , но ни одна из них не была доведена до уровня теории струн или теории петлевой гравитации. В частности, конечно, в вопросах внутренней непротиворечивости последних была проделана огромная работа, намного опередившая остальных конкурентов. Конечно, теории отдельно проверялись в экстремальных теоретических экспериментах — например, насколько хорошо та или иная теория описывает физику в окрестности, скажем, сверхмассивных черных дыр. Это ведь очень полезная работа — посмотреть на теорию в экстремальных условиях. Даже если мы не можем получить нужные условия экспериментально, такой подход бывает очень плодотворным. Недавно, например, в таком теоретическом эксперименте были получены довольно интересные результаты. Тут снова надо сделать небольшое отступление в прошлое. В 70-х годах прошлого века Стивен Хокинг заинтересовался вот каким вопросом: что происходит с материей, когда она падает в черную дыру? Ученые до него сказали бы, что все понятно — материя падает, пропадает, она в черной дыре, конец. Однако Хокинг обнаружил, что черные дыры могут излучать. Это означает, что как минимум часть материи, попавшей в черную дыру, попадает наружу в виде излучения. Свое открытие Хокинг сделал, добавив в теорию относительности немного квантовой механики. Он не объединил эти теории полностью, но объединил их в достаточной мере, чтобы делать конкретные космологические предсказания, которые позволяли кое-что в этой самой космологии объяснить. В 1997 году Хокинг уже на пару с Кипом Торном заключил пари на полное издание Британской энциклопедии с Джоном Прескиллом, профессором Калифорнийского технологического института и директором Института квантовой информации. Прескилл утверждал, что информация в черной дыре не исчезает — просто мы не в состоянии расшифровать то, что дыра излучает. В августе 2004 года на Международной конференции по общей теории относительности и космологии в Дублине Хокинг признал правоту Прескилла и предложил примерный механизм излучения информации правда, не принятый до конца научным сообществом. Как бы то ни было, возник вопрос. Квантовая механика требует, чтобы информация сохранялась. Это означает, что излучение дыры должно нести информацию о том, что в нее попало. Однако расчеты Хокинга показали, что излучение дыры имеет тепловой спектр. Это означает, что дыра излучает как абсолютно черное тело определенной температуры — в частности, это излучение не несет никакой информации о том, что в эту самую дыру упало. Возникает проблема исчезновения информации в черной дыре, которую сам Хокинг считал вовсе не проблемой, а просто законом природы. Мол, так устроена жизнь и информацию можно уничтожить. Потом пришла теория струн. И только совсем недавно, летом 2012 года, когда физики стали разбираться в тонкостях того, что происходит с информацией в черной дыре, как она «вырывается» наружу, они обнаружили, что три факта о черных дырах, которые до последнего времени считались верными, на самом деле противоречат друг другу. Речь идет о представлении горизонта событий черной дыры как гладкого региона пространства, в окрестностях которого ничего особенного, вообще говоря, не происходит; представлении о том, что квантовая механика унитарна то есть, в частности, требует сохранения информации , а также о том, что при достаточно низких энергиях на достаточном удалении от самой дыры применимы методы квантовой теории поля. Как разрешить это противоречие, пока никто не знает. Это, кстати, заставляет уже многих ученых ставить под сомнение саму теорию струн. Например, тот же Леонард Зюскинд, которого я упоминал выше, в связи с этим парадоксом выдвинул гипотезу, что, мол, теория струн в современном понимании, возможно, не полностью квантует гравитацию. А мы в это верили многие десятилетия. И это здорово, это именно то, что нужно — пусть не реальные эксперименты, а теоретические, но они заставляют ученых пересматривать теорию. Это чем-то напоминает зеркальную симметрию, о которой мы говорили раньше, только это соответствие более кардинальное. Дело в том, что на первый взгляд между этими теориями нет вообще ничего общего, ничего, что даже отдаленно могло бы их связывать. Но дело даже не в том, что две такие разные теории оказываются одним и тем же. Ее просто нет в уравнениях.

В Теории Относительности - оно гладкое и ровное на любых масштабах. И раз у них есть масса и энергия, то они... Из-за чего оно становится искривлённым и неровным. На самом деле есть и другая причина. В квантовой теории поля силы возникают благодаря обмену частицами, а в теории относительности - из-за кривизны Пространства-Времени. И если всё объединять, то должна существовать частица - переносчик Гравитации, гравитон, но если рассматривать его как точечный объект как в стандартной модели , то это фееричный провал: Раз он крошечный, вокруг него возникает мегасильное гравитационное поле, такое, что оно порождает вторичные гравитоны, те, в свою очередь - другие поля, и так далее, до бесконечности. Насчёт других частиц ученые как-то разобрались, но вот что делать с гравитонами? Поэтому возникновение вторичных гравитонов не носит лавинообразный характер. Но что касается темной материи и тёмной энергии - Теория Струн не предлагает готового решения да-да! Но она настолько гибкая, что наверняка сможет и их тоже объяснить. Надо только дать время доработать теорию... Похожее по теме... Говоря простыми словами, гравитация - это притяжение между двумя любыми объектами во вселенной. Первая версия Теории Струн, разработанная ещё в 1960 годах, значительно отличается от текущей, вроде бы название почти одно и то же, а по сути - многое различно. Появилась Теория Суперструн, Суперсимметрия по сути мир, составленный из фотонов , и частицы, подтверждающие суперсимметрию, должны были бы быть найдены, но их пока НЕТ. Оказалось, что у Теории Струн очень много недостатков... Появилась теория уже не струн, а целых поверхностей и всё стало настолько сложным и запутанным, что... Теория струн ЕЩЁ не сброшена со счетов, но уже не так популярна. По краткой доказательной базе: Огромный ускоритель с целую Галактику возможно помог бы определить - есть ли струны или нет, то есть доказательства пока нет. Теоретические выкладки, которые смогли бы что-то объяснить, очень сложны для понимания, что опять приводит к тупику.

Это, с одной стороны, усилило интерес к изучению возможных, но не реализованных типов устройства мироздания, а с другой — сблизило постановку задачи исследования в физике и математике. Естественным следствием такого подхода стало представление о нашей Вселенной как об одной из многих возможных, что нашло выражение в гипотезе Мультиленной Multiverse и в антропном принципе. На более простом уровне теория струн побудила к поиску аналогий между моделями квантовой теории, используемыми в различных областях физики, но принадлежащими одному классу универсальности. Это со временем может привести к широкому применению аналоговых экспериментов и уже вызвало бурное развитие компьютерных методов физики в качестве дополнения к обычным прямым экспериментам. В узком смысле термин «теория струн» применяется для конкретного обобщения стандартной КТП, в которой точечные частицы заменены одномерными струны или многомерными браны протяжёнными объектами, взаимодействие между которыми происходит в отдельных точках. Это позволяет избежать нарушения принципа причинности. Даже простейшие модели такого рода включают в себя все фундаментальные законы природы, объединяя электромагнитные, слабые и сильные взаимодействия с гравитацией и решая проблему неперенормируемости квантовой теории гравитации.

Обнаружено новое доказательство теории струн

Такие величины как масса, скорость частиц и прочее устанавливаются колебаниями этих струн. Каждая такая струна по теории находится в многообразии Калаби-Яу. Эти многообразия представляют собой очень искривленное пространство. По теории многообразия ничем не соединены в пространстве и находятся маленькими клубочками по отдельности. Теория струн буквально стирает четкие границы у процесса соединения двух микрочастиц. Когда микрочастицы представлены шарами, то мы четко можем отследить границу в пространстве-времени, когда они соединяются. Однако, если соединяются две струны, то место их «склеивания» можно рассмотреть под разными углами. А под разными углами мы получим совершенно разные результаты границы их соединения, то есть точного понятия такой границы просто нет!

На первом этапе изучения теория струн, рассказанная даже простыми словами кажется загадочной, странной и даже просто вымышленной, но за нее говорят не голословные слова, а исследования, которые по многим уравнениям и параметрам подтверждают вероятность существования частиц-струн. И, напоследок, еще одно видео, объясняющее теорию струн простым языком от интернет — журнала QWRT.

Однако последствия квантовой гипотезы для детерминизма тогда еще не осознавались. Пока в 1926 году другой немецкий ученый, Вернер Гейзенберг, не сформулировал знаменитый принцип неопределенности. Суть его сводится к тому, что вопреки всем господствующим до того утверждениям, природа ограничивает нашу способность предсказывать будущее на основе физических законов.

Речь, конечно, идет о будущем и настоящем субатомных частиц. Выяснилось, что они ведут себя совершенно не так, как это делают любые вещи в окружающем нас макромире. На субатомном уровне ткань пространства становится неровной и хаотичной. Мир крошечных частиц настолько бурный и непонятный, что это противоречит здравому смыслу. Пространство и время в нем настолько искривлены и переплетены, что там нет обычных понятий левого и правого, верха и низа, и даже до и после. Не существует способа сказать наверняка, в какой именно точке пространства находится в данный момент та или иная частица, и каков при этом момент ее импульса.

Существует лишь некая вероятность нахождения частицы во множестве областей пространства-времени. Частицы на субатомном уровне словно «размазаны» по пространству. Мало этого, не определен и сам «статус» частиц: в одних случаях они ведут себя как волны, в других — проявляют свойства частиц. Это то, что физики называют корпускулярно-волновым дуализмом квантовой механики. Уровни строения мира: 1. Макроскопический уровень — вещество 2.

Молекулярный уровень 3. Атомный уровень — протоны, нейтроны и электроны 4. Субатомный уровень — электрон 5. Субатомный уровень — кварки 6. Ramos В Общей теории относительности, словно в государстве с противоположными законами, дело обстоит принципиально иначе. Пространство представляется похожим на батут — гладкую ткань, которую могут изгибать и растягивать объекты, обладающие массой.

Они создают деформации пространства-времени — то, что мы ощущаем как гравитацию. Стоит ли говорить, что стройная, правильная и предсказуемая Общая теория относительности находится в неразрешимом конфликте с «взбалмошной хулиганкой» — квантовой механикой, и, как следствие, макромир не может «помириться» с микромиром. Вот тут на помощь и приходит теория струн. Многие ученые уверены, что всё, от изысканного танца галактик до безумной пляски субатомных частиц, может в итоге объясняться всего одним фундаментальным физическим принципом. Может быть — даже единым законом, который объединяет все виды энергии, частиц и взаимодействий в какой-нибудь элегантной формуле. ОТО описывает одну из самых известных сил Вселенной — гравитацию.

Квантовая механика описывает три других силы: сильное ядерное взаимодействие, которое склеивает протоны и нейтроны в атомах, электромагнетизм и слабое взаимодействие, которое участвует в радиоактивном распаде. Любое событие в мироздании, от ионизации атома до рождения звезды, описывается взаимодействиями материи посредством этих четырех сил. С помощью сложнейшей математики удалось показать, что электромагнитное и слабое взаимодействия имеют общую природу, объединив их в единое электрослабое. Впоследствии к ним добавилось и сильное ядерное взаимодействие — но вот гравитация к ним не присоединяется никак. Теория струн — одна из самых серьезных кандидаток на то, чтобы соединить все четыре силы, а, значит, объять все явления во Вселенной — недаром ее еще называют «Теорией Всего». Вначале был миф До сих пор далеко не все физики пребывают в восторге от теории струн.

А на заре ее появления она и вовсе казалась бесконечно далекой от реальности. Само ее рождение — легенда. Согласно легенде, как-то он случайно наткнулся на пыльную книгу по истории математики, в которой нашел функцию двухсотлетней давности, впервые записанную швейцарским математиком Леонардом Эйлером. Каково же было удивление Венециано, когда он обнаружил, что функция Эйлера, которую долгое время считали не чем иным, как математической диковинкой, описывает это сильное взаимодействие. Как же было на самом деле? Формула, вероятно, стала результатом долгих лет работы Венециано, а случай лишь помог сделать первый шаг к открытию теории струн.

Функция Эйлера, чудесным образом объяснившая сильное взаимодействие, обрела новую жизнь. Эти частицы вели себя так, что не могли быть просто точечными частицами. Сасскинд понял — формула описывает нить, которая подобна упругой резинке. Она могла не только растягиваться и сжиматься, но и колебаться, извиваться.

Опубликовано 15 октября 2022, 10:08 2 мин. Физики тоже так подумали в 70-х годах прошлого столетия и придумали теорию струн. Ее основа в том, что все во вселенной соединено крошечными ниточками, которые создают колебания.

И вот эти волны передаются от самых мельчайших элементарных частиц из которых все состоит все дальше и дальше, определяя их массу, заряд положительный или отрицательный и прочие особенности.

Теплые секреты для уютного дома Подписаться Теория струн кратко и понятно. Теория струн — это одна из революционных и самых противоречивых теорий в физике, целью которой является объединение всех частиц и фундаментальных сил природы в единую теорию. За этим открытием стоит математика, теория основана на простых предположениях и расчетах.

Теория струн кратко и понятно

Уровни строения мира. Макроскопический — вещество. Атомный — протоны, нейтроны и электроны. Субатомный — электрон. Субатомный — кварки. Струнный Предположения и прогнозы Теория основана на двух предположениях: Основными строительными блоками Вселенной будут не точечные частицы, а разновидности вибрирующих шнуров с натяжением , подобных резиновой ленте. То, что мы воспринимаем как частицы с разными характеристиками массой , электрическим зарядом и т. Таким образом, разные типы струн, колеблющиеся с разной частотой, лежат в основе всех элементарных частиц нашей Вселенной. С этой гипотезой теоретики струн допускают минимальный масштаб, связанный с размером Планка , и, таким образом, легко избегают появления определенных бесконечных величин «расходимостей» , которые неизбежны в обычных квантовых теориях поля.

Вселенная будет содержать более трех пространственных измерений. Некоторые из них, свернутые сами по себе теории Калуцы — Клейна , остаются незамеченными на наших шкалах с помощью процедуры, называемой размерной редукцией. Исходя из этих предположений, теория струн предсказывает, что: Гравитон , бозон то есть посредник от силы тяжести , будет частицей спины 2 и нулевой массы в соответствии с квантовой физикой. Его струна имеет нулевую амплитуду волны. Общие концепции теорий Бранес -Брана , или , точнее , р-браны, является расширенным объектом в теории струн. Р это число пространственных измерений , в которых -брана расширяется. К этому числу необходимо добавить временное измерение, чтобы получить общее количество измерений. Например, 1-брана — это брана только с одним пространственным измерением, но всего с двумя измерениями.

Следовательно, они соответствуют поверхностям вселенной. Несколько космологических моделей возникло в результате введения бран в теорию струн. Общая идея бранарной космологии состоит в том, что наша Вселенная ограничена 4-браной. Это означает, что частицы материи кварки , электроны и т. И фундаментальные взаимодействия, отличные от гравитации переносимые частицами, такими как фотон , глюон и т. Также в рамках модели Большого взрыва недавно была предложена идея, как альтернатива космической инфляции, описывающая самые первые моменты истории Вселенной , экпиротическая модель. В этой модели начальное расширение происходит из-за столкновения браны и антибраны, которая высвобождает энергию, необходимую для расширения Вселенной. Эта модель предсказывает возможность других столкновений, которые приведут к другим Большим взрывам.

Тем не менее, это не вызывает единодушия в сообществе космологов, и космическая инфляция остается механизмом, который в основном рассматривается для описания первых моментов. Дополнительные размеры Пример пространства Калаби-Яу. Согласно теории струн, наш мир, пространство которого кажется трехмерным, будет состоять не из четырех измерений пространства-времени три измерения пространства и одно время , а из 10, 11 или даже 26 измерений. Без этих дополнительных измерений теория рушится. Действительно, физическая когерентность волновая функция, дающая неотрицательные вероятности требует наличия дополнительных. Причина, по которой они остаются невидимыми, заключается в том, что они будут свернуты в процессе уменьшения размеров в микроскопическом масштабе в миллиарды раз меньше атома , что не позволит нам их обнаружить.

По теории квантовой физики микромир совершенно неровный, имеет вездесущие шероховатости. Это если говорить обыденным языком. А математики и физики вовлекли свои теории в формулы. И вот, когда формулы квантовой физики и ОТО попытались соединить, то в ответе получилась бесконечность. Бесконечность в физике равносильна утверждению, что уравнение построено неправильно. Полученное равенство перепроверяли на много раз, но ответ по-прежнему был бесконечностью. Теория струн внесла коренные изменения в будничный мир науки. Она представляет собой постановление о том, что все микрочастицы не шарообразной формы, а формы вытянутых струн, которые пронизывают всю нашу вселенную. Такие величины как масса, скорость частиц и прочее устанавливаются колебаниями этих струн. Каждая такая струна по теории находится в многообразии Калаби-Яу. Эти многообразия представляют собой очень искривленное пространство.

Эти дополнительные измерения могут быть свернуты в маленькие крошечные размерности, которые мы не можем наблюдать напрямую. Одной из ключевых идей теории струн является то, что различные физические частицы могут быть интерпретированы как различные режимы колебания струн. Таким образом, все частицы и силы природы могут быть объяснены как результат вибраций струн различной формы и энергии. Эта концепция позволяет нам объединить все фундаментальные частицы и взаимодействия в одну единую теорию. Главное преимущество теории струн является ее способность объединить общую теорию относительности Эйнштейна и квантовую механику. Такая объединенная теория, называемая "теорией струн M-теории", может предложить нам новое понимание о том, как работает Вселенная на самом фундаментальном уровне. Однако, несмотря на все потенциальные преимущества и красоту теории струн, она также сталкивается с некоторыми трудностями. Например, для полного понимания теории струн требуется наличие дополнительных измерений, которые мы не можем наблюдать напрямую. Кроме того, теория струн может иметь множество различных решений, что делает сложным выбор конкретной модели, соответствующей нашей Вселенной. Тем не менее, теория струн остается одной из самых обещающих идей в физике современности. Она предлагает новые возможности для объединения различных ветвей физики и может привести к новым открытиям и пониманию микромира. Многие ученые продолжают работать над развитием этой теории и надеются, что она приведет нас к новому пониманию основных законов природы. В заключение, теория струн представляет собой увлекательное направление физики, которое может изменить наше понимание о строении Вселенной. Она предлагает объединение всех фундаментальных сил и частиц в одну единую теорию и открывает новые возможности для изучения микромира. Несмотря на некоторые сложности, теория струн продолжает привлекать внимание исследователей и может привести к новым открытиям, которые изменят наше представление о физике. Где почитать о теории струн? Научно-популярная Вайнберг С. Мечты об окончательной теории: физика в поисках самых фундаментальных законов природы: Пер. Теории струн посвящена 9-я глава «Контуры окончательной теории». Грин Б. Элегантная Вселенная.

Они похожи на струну на скрипке: когда вы отрываете струну, она вибрирует и создает небольшую музыкальную ноту. Иллюстрация струны Однако крошечные струны в теории струн не дают музыкальных нот. Вместо этого, когда они вибрируют, они сами производят частицы. Каждый тип вибрации соответствует различным частицам. Следовательно, кварк - это не что иное, как струна, вибрирующая по одной схеме, а электрон - это не что иное, как струна, вибрирующая по другой схеме. Так что, если вы соберете все эти частицы обратно вместе, яблоко будет не чем иным, как связкой вибраций в струнах. Если теория струн верна она все еще не доказана , все вещи во вселенной - не что иное, как танцующая вибрирующая космическая симфония струн. Дополнительное измерение На данный момент теория струн является простой идеей. Нет прямых экспериментальных доказательств того, что это правильное описание природы. Теория струн требует от нас принять существование дополнительного измерения во вселенной. Суперсимметрия Во Вселенной существует два основных класса элементарных частиц: бозоны и фермионы. Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот. Принцип суперсимметрии был открыт вне теории струн. Однако его включение в теорию струн позволяет определенному члену в уравнениях вычеркнуть и придать смысл. Без этого принципа уравнения теории струн приводят к физическим несоответствиям, таким как воображаемые уровни энергии и бесконечные значения. Другими словами, объединение идеи суперсимметрии с теорией струн дает лучшую теорию, теорию суперструн. Физики надеются, что эксперименты с ускорителями частиц и астрономические наблюдения позволят выявить несколько суперсимметричных частиц, что обеспечит поддержку теоретических основ теории струн. Объединение сил Современная физика имеет два совершенно разных закона: общая теория относительности и квантовая механика. Относительность изучает большие объекты в масштабе планет, галактик и вселенной, в то время как квантовая механика имеет тенденцию изучать крошечные объекты в природе на самых маленьких масштабах энергетических уровней атомов и субатомных частиц. Не совсем понятно, как гравитация влияет на мельчайшие частицы. Теории, которые стремятся описать гравитацию в соответствии с принципами квантовой механики, называются теориями квантовой гравитации, и одной из наиболее многообещающих из всех таких теорий является теория струн.

Что такое теория струн?

Я могу объяснить, что такое пять измерений. Если представить водопроводный шланг, по которому насекомое спокойно может передвигаться вдоль и поперек — это нормальное наше измерение. Представьте, что эта трубочка свернута до планковской длины волны. С точки зрения любого наблюдателя, это будет одномерная линия. С точки зрения реальности физической — двухмерная линия. Расширение Вселенной вопреки всем ожиданиям не замедляется, а ускоряется. Оказалось, что она состоит из трех видов материи.

Масса полученного объекта прямо пропорциональна амплитуде совершенного колебания; Теория помогает по-новому взглянуть на черные дыры; Также с помощью нового учения удалось раскрыть силу тяжести во взаимодействиях между фундаментальными частицами; В отличии господствующих ныне представлений о четырехмерном мире, в новой теории вводятся дополнительные измерения; В настоящее время концепция еще не принята официально в широком научном сообществе.

Не известно ни одного эксперимента, который бы подтверждал эту гармоничную и выверенную на бумаге теорию. Историческая справка История данной парадигмы охватывает несколько десятилетий интенсивных исследований. Благодаря совместным усилиям физиков по всему миру, была разработана стройная теория, включающая концепции конденсированных сред, космологию и теоретическую математику. Основные этапы ее развития: 1943—1959 гг. Появилось учение Вернера Гейзенберга об s-матрице, в рамках которого предлагалось отбросить понятия пространства и времени для квантовых явлений. Гейзенберг впервые обнаружил, что участники сильных взаимодействий представляют собой протяженные объекты, а не точки; 1959—1968 гг. Были обнаружены частицы с высокими спинами моментами вращения.

Итальянский физик Туллио Редже предложит группировать квантовые состояния в траектории которые были названы его именем ; 1968—1974 гг. Гарибрэле Венециано предложил модель двойного резонанса для описания сильных взаимодействий.

Физики Йохиро Намбу, Холгер Нильсен и Леонард Сасскинд размышляли: почему старинная формула так легко подошла и какой физический смысл таится в этой сложной математике?

К 1970 году им стало ясно, что сильное взаимодействие элементарных частиц превосходно описывается с помощью бета-функции Эйлера, если представлять их в виде крошечных колеблющихся одномерных струн. Эти невидимые человеческому глазу нити ученые воображали как замкнутые — в виде колец — и как открытые. Было решено, что длина струн настолько мала, что их с натяжкой можно рассматривать как точки, а значит, для фундаментальной физики ничего не изменилось.

Так возникло понятие «квантовая струна» — под ним подразумевается бесконечно тонкие одномерные объекты длиной в 10—35 м, колебания которых воспроизводят все многообразие элементарных частиц. Это была настоящая революция в мире физики, так как все ранее открытые «ингредиенты Вселенной» электроны, протоны, нейтроны и пр. Струны более массивных частиц совершают более интенсивные колебания, а струны более легких частиц колеблются менее интенсивно.

В конечном итоге колебания на определенной частоте определяют свойства струн: массу и электрический заряд, что позволяет отнести их к определенной разновидности фундаментальных частиц, будь то кварк, фотон, глюон и др. Уровни строения мира. Макроскопический — вещество.

Атомный — протоны, нейтроны и электроны. Субатомный — электрон. Субатомный — кварки.

Струнный От пяти теорий к одной Теория струн оказалась крепким орешком даже для самых высоколобых ученых.

Квантовые поля Начнем с рассмотрения традиционной квантовой теории поля. В классической физике поля описываются как нечто типа тумана, который пронизывает область пространства и может переносить возмущения в виде ряби и колебаний. В квантовой механике понятия поля приводит к квантовой теории поля. Квантовая неопределенность заставляет значение поля в каждой точке случайно колебаться. Подобно воде, состоящей из молекул H2O, квантово-механическое поле состоит из бесконечно малых частиц — кванты поля. Но как бы не представлять частицы в рамках квантовой теории поля они математически описываются как крохотные точки, не имеющие пространственного размера и внутренней структуры. Осведомлённый читатель может не согласиться с утверждением, что каждое поле ассоциируется с частицей. Более точное утверждение звучит так: малые флуктуации поля около локального минимума его потенциала обычно интерпретируются как возбуждения частиц.

Этого определения будет достаточно для наших обсуждений. К тому же осведомлённый читатель заметит, что локализация частицы в точке сама по себе является идеализацией, потому что для этого потребуется — из принципа неопределённости — бесконечный импульс и энергия. Опять же суть в том, что в квантовой теории поля нет, в принципе, предела того, как можно локализовать частицу. Вера физиков в квантовую теорию поля обусловлена одним существенным фактором: ни один эксперимент не противоречит её предсказаниям. Наоборот, данные подтверждают, что уравнения квантовой теории поля описывают поведение частиц с изумительной точностью. После такого успеха можно ожидать, что квантовая теория поля является математическим фундаментом для понимания всех сил в природе. В результате упорного труда многих из физиков к концу 1970-х было установлено, что слабое и сильное ядерные взаимодействия действительно прекрасно описываются квантовой теорией поля. Однако многие из физиков быстро пришли к выводу, что ситуация с четвёртым взаимодействием в природе — гравитацией, гораздо тоньше. Как только уравнения общей теории относительности объединяются с уравнениями квантовой теории, математика начинает бунтовать.

Совместное использование уравнений для вычисления квантовой вероятности некоторых физических процессов — таких как вероятность того, что два электрона оттолкнутся друг от друга — как правило, приводит к ответу бесконечность. Но вероятности бесконечными быть не могут. По определению значение вероятности должно находиться между 0 и 1 между 0 и 100, если считать в процентах. Бесконечная вероятность шлёт очевидный математический намёк: совместное использование уравнений бессмысленно. Физики выяснили, что проблема кроется в дрожании и флуктуациях из-за квантовой неопределённости. Математические методы квантовой теории поля были разработаны для анализа флуктуаций сильных, слабых и электромагнитных полей, но, при их применении к гравитационному полю — полю, которое определяет кривизну пространства-времени, — оказалось, что они бесполезны. Целое поколение физиков боролось с квантовыми флуктуациями, и к началу 1970-х годов были развиты математические методы, адекватно описывающие квантовые свойства негравитационных полей. Однако флуктуации гравитационного поля качественно другие. Они больше похожи на землетрясение.

Поскольку гравитационное поле вплетено в саму ткань пространства-времени, квантовые флуктуации сотрясают всю его структуру вдоль и поперёк. Математические методы, используемые для анализа таких всеобъемлющих квантовых флуктуаций, перестают работать. В течение многих лет физики смотрели сквозь пальцы на эту проблему, потому что она возникает только при весьма экстремальных условиях. Гравитация вступает в игру, когда объекты очень массивны, а квантовая механика — когда их размер очень мал. Редко бывает, чтобы предмет был одновременно и массивный, и малым. Однако подобные ситуации возникают. Когда гравитация и квантовая механика применяются для описания или Большого взрыва, или чёрных дыр, то есть когда действительно огромная масса вещества сжимается до небольших размеров, математические методы перестают работать. Насколько массивным и малым должна быть физическая система, для того чтобы и гравитация, и квантовая механика играли существенную роль. Ответ такой — масса, примерно в 109 раз превышающая массу протона, так называемая масса Планка, сжатая до фантастически малого объёма примерно 10-99 кубического сантиметра грубо говоря, это сфера с радиусом 10-33 сантиметра с так называемой планковской длиной.

Таким образом, расстояние, на котором квантовая гравитация вступает в права, в миллион миллиардов раз меньшее расстояния, достижимого на самых мощных в мире ускорителях. Такая огромная неисследованная территория легко может быть населена новыми полями и их частицами — и кто знает, чем ещё. Однако в середине 1980-х годов в физическом сообществе поползли слухи, что в направлении объединения произошёл серьёзный теоретический прорыв в рамках подхода, названного теорией струн. Теория струн Хотя теория струн имеет репутацию сложной теории, её основная идея очень простая. Стандартная точка зрения, до теории струн, состояла в том, что фундаментальные составляющие являются точечными частицами — точками без внутренней структуры, — которые описываются уравнениями квантовой теории поля. Теория струн бросает вызов такому представлению, утверждая, что частицы не являются точечными. Вместо этого, предлагается рассматривать их как крошечные, струноподобные вибрирующие нити. При более детальном рассмотрении, говорит теория, вы увидите, что струны в частицах разного типа неразличимы, но вибрируют они по-разному. Электрон менее массивен чем кварк, и согласно теории струн, это означает, что струна электрона вибрирует менее энергично, чем струна кварка.

Различные свойства частиц объясняются разным вибрационным поведением нитей в теории струн, подобно тому как разные вибрации гитарных струн порождают звучание разных музыкальных нот. По причине бесконечно малого размера струны, порядка планковской длины — 10-33 сантиметра, даже самые точные современные эксперименты не могут подтвердить или опровергнуть протяжённую структуру струны. БАК, на котором частицы сталкиваются друг с другом при энергиях, превышающих в 10 триллионов раз энергию покоящегося протона, может добраться до расстояний примерно 10-19 сантиметра; это миллионная от миллиардной доли толщины волоса, но всё же оно слишком велико, на много порядков больше планковских расстояний. Поэтому струны выглядят как точки, даже если их изучать на самых мощных в мире ускорителях частиц. Тем не менее, согласно теории струн, частицы являются струнами. В этом, в двух словах, и заключается теория струн. Струны, точки и квантовая гравитация Следует подчеркнуть три особо важных момента. Во-первых, когда учёные физики предлагают модель описания природы с помощью квантовой теории поля, они также выбирают поля, которые войдут в теорию. Этот выбор диктуется экспериментальными ограничениями, а также теоретическими предпосылками.

Главным примером является Стандартная модель. Рассматриваемая как венец достижений физики частиц XX столетия благодаря своей способности правильно описывать большое количество данных, собранных на ускорителях частиц по всему миру, Стандартная модель является квантовой теорией поля. Стандартная модель, безусловно, крайне успешна, но многие физики полагают, что по-настоящему фундаментальное понимание не требует такого разношёрстного набора ингредиентов.

Теория струн

Теория струн кратко и струн — это одна из революционных и самых противоречивых теорий в физике, целью которой является объединение всех частиц и фундаментальных сил природы в единую тео. Квантовая теория струн – это фундаментальная теория, которая стремится объединить квантовую механику и общую теорию относительности. Оказалось, что теория струн замечательно может свести все четыре фундаментальных взаимодействия Вселенной к одному — колебанию одномерной струны с соответствующим переносом энергии. Теория струн рассматривалась как возможная «теория всего», единая структура, которая могла бы объединить общую теорию относительности и квантовую механику, две теории, лежащие в основе современной физики. Теория струн воплощает мечту всех физиков по объединению двух, в корне противоречащих друг другу ОТО и квантовой механики, мечту, которая до конца дней не давала покоя величайшему «цыгану и бродяге» Альберту Эйнштейну. Почта Мой МирОдноклассникиВКонтакте Игры Знакомства Новости Поиск Облако VK Combo Все проектыВсе проекты.

Теория струн для чайников

Компактификация[ Файл:Calabi-Yau. Шестимерное разложение моделей достигается с помощью пространств Калаби — Яу. Стандартная аналогия, используемая при рассмотрении многомерного пространства, — садовый шланг. Если наблюдать шланг с достаточно далекого расстояния, будет казаться, что он имеет только одно измерение — длину.

Но если приблизиться к нему, обнаруживается его второе измерение — окружность. Истинное движение муравья, ползающего по поверхности шланга, двумерно, однако издалека оно нам будет казаться одномерным. Дополнительное измерение доступно наблюдению только с относительно близкого расстояния, поэтому и дополнительные измерения пространства Калаби — Яу доступны наблюдению только с чрезвычайно близкого расстояния, то есть практически не обнаруживаемы.

Локализация[ ] Другой вариант — локализация — состоит в том, что дополнительные измерения не столь малы, однако в силу ряда причин все частицы нашего мира локализованы на четырёхмерном листе в многомерной вселенной мультивселенной и не могут его покинуть. Этот четырёхмерный лист брана и есть наблюдаемая часть мультивселенной. Поскольку мы, как и вся наша техника, состоим из обычных частиц, то мы в принципе неспособны взглянуть вовне.

Единственная возможность обнаружить присутствие дополнительных измерений — гравитация. Гравитация, будучи результатом искривления пространства-времени, не локализована на бране, и потому гравитоны и микроскопические чёрные дыры могут выходить вовне. В наблюдаемом мире такой процесс будет выглядеть как внезапное исчезновение энергии и импульса, уносимых этими объектами.

Проблемы[ Возможность критического эксперимента[ ] Теория струн нуждается в экспериментальной проверке, однако ни один из вариантов теории не даёт однозначных предсказаний, которые можно было бы проверить в критическом эксперименте. Таким образом, теория струн находится пока в «зачаточной стадии»: она обладает множеством привлекательных математических особенностей и может стать чрезвычайно важной в понимании устройства Вселенной, но требуется дальнейшая разработка для того, чтобы принять её или отвергнуть. Поскольку теорию струн, скорее всего, нельзя будет проверить в обозримом будущем в силу технологических ограничений, некоторые ученые сомневаются, заслуживает ли данная теория статуса научной, поскольку, по их мнению, она не является фальсифицируемой в попперовском смысле.

Разумеется, это само по себе не является основанием считать теорию суперструн неверной. Многие новые теоретические конструкции проходят стадию неопределённости, прежде чем, на основании сопоставления с результатами экспериментов, признаются или отвергаются. Поэтому и в случае теории суперструн требуется либо развитие самой теории, то есть методов расчёта и получения выводов, либо развитие экспериментальной науки для исследования ранее недоступных величин.

Фальсифицируемость и проблема ландшафта[ ] В 2003 году выяснилось [3] , что существует множество способов свести 10-мерные суперструнные теории к 4-мерной эффективной теории поля. Сама теория струн не давала критерия, с помощью которого можно было бы определить, какой из возможных путей редукции предпочтителен. Каждый из вариантов редукции 10-мерной теории порождает свой 4-мерный мир, который может напоминать, а может и отличаться от наблюдаемого мира.

Всю совокупность возможных реализаций низкоэнергетического мира из исходной суперструнной теории называют ландшафтом теории. Оказывается, количество таких вариантов поистине огромно. Считается, что их число составляет как минимум 10100; не исключено, что их вообще бесконечное число.

В результате получается удручающая картина. Каков бы ни был наш мир, всегда найдется способ свести его к суперструнной теории. Таким образом, суперструнная теория не только не противоречит современным экспериментальным данным, но и не будет противоречить никакому эксперименту в обозримом будущем.

Это означает, что теория суперструн близка к тому, чтобы потерять ключевое свойство научной теории — фальсифицируемость. В течение 2005 года неоднократно высказывались предположения [4] , что прогресс в этом направлении может быть связан с включением в эту картину антропного принципа: мы существуем именно в такой Вселенной, в которой наше существование возможно. Вычислительные проблемы[ ] С математической точки зрения, ещё одна проблема состоит в том, что, как и квантовая теория поля , большая часть теории струн всё ещё формулируется пертурбативно в терминах теории возмущений.

Несмотря на то, что непертурбативные методы достигли за последнее время значительного прогресса, полной непертурбативной формулировки теории до сих пор нет. Текущие исследования[ Изучение свойств чёрных дыр[ ] В 1996 г.

Аспиранты физических вузов бегали по коридорам с криками, что открыли новую частицу, — не хватало даже букв для их обозначения. Но, увы, в «родильном доме» новых частиц ученые так и не смогли отыскать ответ на вопрос — зачем их так много и откуда они берутся? Это подтолкнуло физиков к необычному и потрясающему предсказанию — они поняли, что силы, действующие в природе, также можно объяснить с помощью частиц. То есть существуют частицы материи, а есть частицы-переносчики взаимодействий. Таковым, например, является фотон — частица света. Ученые предсказывали, что именно этот обмен частицами-переносчиками — есть не что иное, как то, что мы воспринимаем как силу. Это подтвердилось экспериментами. Так физикам удалось приблизиться к мечте Эйнштейна по объединению сил.

А если вернуться во времени еще дальше, то электрослабое взаимодействие соединилось бы с сильным в одну суммарную «суперсилу». Несмотря на то, что все это еще ждет своих доказательств, квантовая механика вдруг объяснила, как три из четырех сил взаимодействуют на субатомном уровне. Причем объяснила красиво и непротиворечиво. Эта стройная картина взаимодействий, в конечном счете, получила название Стандартной модели. Но, увы, и в этой совершенной теории была одна большая проблема — она не включала в себя самую известную силу макроуровня — гравитацию. Например, выкладки теории предсказали существование частиц, которых, как точно установили вскоре, не существует. Это так называемый тахион — частица, которая движется в вакууме быстрее света. Помимо прочего выяснилось, что теория требует целых 10 измерений. Неудивительно, что это очень смущало физиков, ведь это очевидно больше, чем то, что мы видим. К 1973 году только несколько молодых физиков все еще боролись с загадочными выкладками теории струн.

Одним из них был американский физик-теоретик Джон Шварц. В течение четырех лет Шварц пытался приручить непослушные уравнения, но без толку. Помимо других проблем, одно из этих уравнений упорно описывало таинственную частицу, которая не имела массы и не наблюдалась в природе. Ученый уже решил забросить свое гиблое дело, и тут его осенило — может быть, уравнения теории струн описывают, в том числе, и гравитацию? Впрочем, это подразумевало пересмотр размеров главных «героев» теории — струн. Предположив, что струны в миллиарды и миллиарды раз меньше атома, «струнщики» превратили недостаток теории в ее достоинство. Таинственная частица, от которой Джон Шварц так настойчиво пытался избавиться, теперь выступала в качестве гравитона — частицы, которую долго искали и которая позволила бы перенести гравитацию на квантовый уровень. Именно так теория струн дополнила пазл гравитацией, отсутствующей в Стандартной модели. Но, увы, даже на это открытие научное сообщество никак не отреагировало. Теория струн оставалась на грани выживания.

Но Шварца это не остановило. Присоединиться к его поискам захотел только один ученый, готовый рискнуть своей карьерой ради таинственных струн — Майкл Грин. За открытие этих «оснований» в 2011 году была вручена Нобелевская премия по физике. Состояло оно в том, что расширение Вселенной не замедляется, как думали когда-то, а, наоборот, ускоряется. Объясняют это ускорение действием особой «антигравитации», которая каким-то образом свойственна пустому пространству космического вакуума. С другой стороны, на квантовом уровне ничего абсолютно «пустого» быть не может — в вакууме постоянно возникают и тут же исчезают субатомные частицы. Такое «мелькание» частиц, как полагают, и ответственно за существование «антигравитационной» темной энергии, которая наполняет пустое пространство. В свое время именно Альберт Эйнштейн, до конца жизни так и не принявший парадоксальные принципы квантовой механики которую он сам и предсказал , предположил существование этой формы энергии. Следуя традициям классической греческой философии Аристотеля с ее верой в вечность мира, Эйнштейн отказывался поверить в то, что предсказывала его собственная теория, а именно то, что Вселенная имеет начало. Чтобы «увековечить» мироздание, Эйнштейн даже ввел в свою теорию некую космологическую постоянную, и таким образом описал энергию пустого пространства.

К счастью, через несколько лет выяснилось, что Вселенная — вовсе не застывшая форма, что она расширяется. Тогда Эйнштейн отказался от космологической постоянной, назвав ее «величайшим просчетом в своей жизни». Сегодня науке известно — темная энергия все-таки существует, хотя плотность ее намного меньше той, что предполагал Эйнштейн проблема плотности темной энергии, кстати, — одна из величайших загадок современной физики. Но как бы ни была мала величина космологической постоянной, ее вполне достаточно для того, чтобы убедиться в том, что квантовые эффекты в гравитации существуют. Шварц и Грин принялись за их устранение. И усилия их не прошли даром: ученые сумели устранить некоторые противоречия теории. Меньше чем за год число струнных теоретиков подпрыгнуло до сотен человек. Именно тогда теорию струн наградили титулом Теории Всего.

Для так называемой восьмимерной компактификации модели теории струн, называемой F-теорией, дополнительные измерения должны иметь форму поверхности K3. В новой работе исследователи рассматривали двойственность двух видов теории струн — F-теории и гетеротической — в восьми измерениях. Теории струн быть Команда нашла четыре уникальных способа разрезать поверхности K3 особенно полезным способом, с помощью якобианских эллиптических расслоений — комплексов из нескольких волокон, по форме напоминающих батон или бублик. Исследователи построили явные уравнения для каждого из этих расслоений и показали, что концепции теории струн в реальном физическом мире имеют право на существование. Пример К3 поверхности «Вы можете думать об этом семействе поверхностей как о буханке хлеба, а о каждой фибрации — как о «ломтике» этой буханки», пишут исследователи. Изучая последовательность «ломтиков», мы можем визуализировать и лучше понять всю буханку. По мнению авторов статьи, важной частью этого исследования является выявление определенных геометрических строительных блоков, называемых «делителями», внутри каждой поверхности K3. Вам будет интересно: Восход и закат теории струн Часы кропотливой работы, в результате позволили математикам доказать теоремы каждого из четырех расслоений, а затем протолкнуть каждую теорему через сложные алгебраические формулы. Издание SciTechDaily приводит слова авторов исследования о том, что для последней части этого процесса ученые использовали программное обеспечение Maple и специализированный пакет дифференциальной геометрии, который оптимизировал вычислительные усилия. Наша Вселенная очень странная и возможно состоит из струн Отметим, что начиная с 1980-х гг.

Пример поперечного сечения поверхности K3 в 3-х мерном пространстве, используемой математиками для изучения струнных двойственностей между F-теорией и гетеротической теорией в восьми измерениях. Напомним, что одной из важных особенностей теории струн является то, что она требует дополнительных измерений пространства-времени для математической согласованности. Однако далеко не каждый способ обработки этих дополнительных измерений, также называемый «компактификацией», дает модель с правильными свойствами для описания природы. Для так называемой восьмимерной компактификации модели теории струн, называемой F-теорией, дополнительные измерения должны иметь форму поверхности K3. В новой работе исследователи рассматривали двойственность двух видов теории струн — F-теории и гетеротической — в восьми измерениях. Теории струн быть Команда нашла четыре уникальных способа разрезать поверхности K3 особенно полезным способом, с помощью якобианских эллиптических расслоений — комплексов из нескольких волокон, по форме напоминающих батон или бублик. Исследователи построили явные уравнения для каждого из этих расслоений и показали, что концепции теории струн в реальном физическом мире имеют право на существование. Пример К3 поверхности «Вы можете думать об этом семействе поверхностей как о буханке хлеба, а о каждой фибрации — как о «ломтике» этой буханки», пишут исследователи. Изучая последовательность «ломтиков», мы можем визуализировать и лучше понять всю буханку. По мнению авторов статьи, важной частью этого исследования является выявление определенных геометрических строительных блоков, называемых «делителями», внутри каждой поверхности K3.

Вы точно человек?

Comments Off on Теория струн кратко и понятно. Теория струн применима к познанию строения микромира не в том смысле, что там кругом висят верёвочки, а что описание происходящих в микромире процессов математически сходно с описанием неких “струн”. Теория струн применима к познанию строения микромира не в том смысле, что там кругом висят верёвочки, а что описание происходящих в микромире процессов математически сходно с описанием неких “струн”. О чем теория струн? Самое простое и понятное объяснение. Теория струн гласит, что неделимые субатомные частицы состоят из крошечных маленьких струн, вибрирующих по определенной схеме. Квантовая теория струн – это фундаментальная теория, которая стремится объединить квантовую механику и общую теорию относительности.

Что такое теория струн и может ли она открыть дверь в другие измерения

В своей основе Теория струн отрицает теорию Большого взрыва и утверждает, что Вселенная существовала всегда. Та материя, сутью которой являются струны, составляет только 5% массы Вселенной — ее видимая часть. Понятно, что с математиче ской точки зрения с гладкими поверхностями работать гораздо лучше и плодотворнее, чем с сингулярными — в этом объяснение успехов математи ческого аппарата теории струн. В теории струн каждая струна колеблется так же, в зависимости от влияющих на нее факторов. Теория струн кратко и понятно.

Похожие новости:

Оцените статью
Добавить комментарий