Новости презентация биотехнологии

Фон для презентации по биотехнологии Открыть оригинал. Привлечены партнеры из ERA-Net EuroTransBio (ETB). (эффективный инструмент финансирования малых предприятий, работающих в области современных биотехнологий). Фото Пипетка, уронившая синий химикат образца на молодое растение в пробирке, концепция исследования биотехнологии. Последние новости биотехнологий в России: достижения и анонсы мероприятий, предстоящие проекты. Презентация на тему Успехи современной биотехнологии к уроку по биологии.

Учёные впервые напечатали на 3D-принтере живые ткани человеческого мозга

РОСБИОТЕХ-2024: инновационные биотехнологии в медицине, промышленности и сельском хозяйстве Ученые рассказали ребятам о том, как биотехнологии применяют в современном мире.
Презентация "Биотехнологии" (11 класс) по биологии – скачать проект Ученые утверждают, что биотехнология открывает новую эру взаимодействия человека с окружающей средой и, особенно, с живым веществом биосферы.
Презентация к исследовательской работе «Зеленые биотехнологии» Новый выпуск журнала «НАУКА из первых рук» вышел «по следам» всероссийской конференции с международным участием «Биотехнология – медицине будущего».

Презентация факультета биотехнологии и промышленной экологии

Биотехнология Общая характеристика направления подготовки. Презентация на тему Биотехнология доступна для скачивания ниже. Презентация на тему "Биотехнология: достижения и перспективы развития", предназначена для сопровождения урока по аналогичной теме для обучающихся 10 класса. Главная Работы на конкурс Предметное образование Естественно-научные дисциплины Презентация к исследовательской работе «Зеленые биотехнологии».

Презентация факультета биотехнологии и промышленной экологии

Если материал и наш сайт презентаций Вам понравились — поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере. Слайды и текст этой презентации Слайд 1 Биотехнология Направления развития и достижения Слайд 2 Описание слайда: Население планеты В 1980 г. В настоящее время на планете - 6 млрд. Чтобы этого не произошло, нужно удовлетворять возрастающие потребности людей в продуктах питания Слайд 3 Биотехнология Нужны принципиально новые технологии производства.

Возможным ущербом для здоровья людей опасность ГМО-растений не ограничивается. Доказано, что некоторые ГМ-растения смертельно опасны для живущих на поле или рядом с ним грызунов и насекомых. Последствия нарушения биоценоза в окрестностях плантаций таких ГМ-растений никто не берётся предсказать. Также существует реально доказанная опасность передачи трансгена от культурного растения его дикорастущим сородичам. В результате может получиться устойчивый к действию пестицидов и гербицидов, не боящийся ни жары, ни холода, не угрызаемый жуками и паразитами и страшно плодовитый суперсорняк. По этой причине, в США, являющихся лидером в создании и производстве ГМ-растений, плантации натуральных и генетически модифицированных растений далеко разнесены друг от друга.

Например, во Флориде ГМ-хлопок разрешено выращивать только в северной части штата, а натуральный — в южной. Обещанное увеличение урожая оказалось не столь значительным, чтобы закрыть глаза на многочисленные страшилки генно-модифицированных растений. В итоге восторженное настроение в мире сменилось на осторожное. В Европе целые города и округи позиционируют себя как «зоны, свободные от ГМО». В России производство ГМО запрещено а импорт почему-то разрешён. У нас в продажу допускаются продукты с добавлением ГМО. Есть сведения, что в нашей стране этот порядок не всегда соблюдается. Перспективы: Скептические. В 2008 г.

ООН и Всемирный банк впервые выступили против крупного агробизнеса и генетически-модифицированных технологий. Эксперты ООН убеждены, что в голоде сотен миллионов людей заинтересован крупный агробизнес, который строит свою политику на создании искусственного дефицита продовольствия. Впервые ООН фактически осудила использование в сельском хозяйстве генетически-модифицированных технологий, поскольку они, во-первых, не решают проблемы голода, а во-вторых, представляют угрозу здоровью населению и будущему планеты. В последние годы сложилось впечатление, что крупные агропромышленные корпорации потихоньку сворачивают исследования по генной модификации растений и переключаются на более благодарную сферу деятельности - микроорганизмы. Корни биотехнологии применительно к микроорганизмам уходят в далёкое прошлое и связаны с хлебопечением, виноделием и другими способами приготовления пищи, известными человеку еще в древности. Например, брожение с участием микроорганизмов, было известно и широко применялось еще в древнем Вавилоне. Микроорганизмы синтезируют целый ряд ценных веществ. С развитием генной инженерии удается не только увеличить продуктивность биосинтеза, но и получать вещества, химическое производство которых ранее было невозможно. Пищевые добавки, аминокислоты, витамины, ароматизаторы, ферменты — вот далеко не полный перечень веществ, которые получают при помощи генетически модифицированных микроорганизмов.

В ряде случаев, биотехнологические методы производства этих соединений уже заменили традиционный химический синтез. Преимущества биотехнологического производства с использованием генетически модифицированных микроорганизмов очевидны: микроорганизмы быстро растут и, в большинстве случаев, легко культивируются. В отличие от традиционного химического синтеза, биосинтез протекает при нормальных условиях, а значит, для него не требуется создание таких дополнительных условий как повышенная температура, давление, или применение агрессивных химикатов. Генетически модифицированные микроорганизмы используются в настоящее время для производства фармацевтических препаратов, вакцин, продуктов тонкого органического синтеза, пищевых добавок и других сопутствующих соединений пищевой промышленности. Вот только некоторые примеры продуктов микробного синтеза: витамин B2, витамин С, лимонная кислота, консерванты натамицин, низин, лизоцим, аминокислоты глутамат, аспартам, цистеин. Впечатляющим успехом является производство в промышленных масштабах человеческого инсулина, вырабатываемого генно-модифицированной кишечной палочкой. Кроме крупных корпораций, биосинтезом сейчас занялись небольшие стартапы, выращивающие генно-модифицированные дрожжи. Роботизированные системы тасуют гены иногда с умыслом, иногда случайным образом, получая и проверяя десятки тысяч штаммов в месяц. Наиболее удачные выращиваются на продажу в чанах вместимостью 200 тыс.

Таким образом им удается получать различные вещества, гораздо более дешевые, чем оригиналы — от пряностей ваниль, шафран, экстракты цитрусовых и сандалового дерева до лекарств пока известно о морфине и противомалярийном препарате артемизинине. Методы биосинтеза с использованием микроорганизмов встречают в мире гораздо меньшее сопротивление, чем выращивание генно-модифицированных растений. Связано это с тем соображением, что в качестве продукции биосинтеза человеком употребляются не сами микроорганизмы, а продукты их метаболизма. Считается, что методы контроля качества исключают попадание генетического кода бактерий и грибов в конечный продукт, и этот продукт ничем не отличается от природного оригинала. Нельзя, правда, не вспомнить о случае в США в конце 80-х годов, когда бактерия, генно-модифицированная для производства пищевой добавки триптофан, стала вдруг по неизвестным причинам также вырабатывать токсичное вещество этилен-бис-триптофан. В результате употребления пищевой добавки погибло 38 человек, и более тысячи стали инвалидами. К счастью, в дальнейшем подобных крупных инцидентов не было зафиксировано. Перспективы: Очень хорошие. Единственные недовольные голоса раздаются от разоряющихся производителей тех натуральных веществ, чья продукция постепенно вытесняется биосинтезом.

Впрочем, подобные соображения в мире ещё никого не останавливали. Биотехнология активно применяется в целях очистки всех компонентов биосферы воды, почвы, воздуха и др. Кроме того, существенным является не только сам процесс очистки, но и возможность использования выделенных отходов в качестве вторичного сырья. Существуют микроорганизмы, для которых загрязнения, содержащиеся в сточных водах, являются питательными веществами. В начале ХХ века произошла революция в очистке сточных вод с помощью активного ила - сложной смеси микроорганизмов. Хотя при этом требуется перемешивать жидкость и непрерывно аэрировать её воздухом, такой способ позволяет перерабатывать большие объёмы стоков с самыми разнообразными загрязнениями от хозяйственно-бытовых до промышленных. Оставшийся ил затем подвергают брожению с получением ценного удобрения. Многие выбросы в атмосферу содержат вредные или дурно пахнущие примеси. Для их очистки применяют биофильтры, заполненные насадкой, на которой закреплены специальные микроорганизмы.

Вредные примеси сорбируются на насадке и затем потребляются и обезвреживаются микроорганизмами.

В современной биотехнологии используются биологические системы всех уровней: от молекулярно-генетического до биогеоценотического биосферного ; при этом создаются принципиально новые биологические системы, не встречающиеся в природе. Биологические системы, используемые в биотехнологии, вместе с небиологическими компонентами технологическое оборудование, материалы, системы энергоснабжения, контроля и управления удобно называть рабочими системами. Cлайд 5 Биотехнология и её роль в практической деятельности человека Особенностью биотехнологии является то, что она сочетает в себе самые передовые достижения научно-технического прогресса с накопленным опытом прошлого, выражающимся в использовании природных источников для создания полезных для человека продуктов.

Любой биотехнологический процесс включает ряд этапов: подготовку объекта, его культивирование, выделение, очистку, модификацию и использование полученных продуктов. Многоэтапность и сложность процесса обусловливает необходимость привлечения к его осуществлению самых разных специалистов: генетиков и молекулярных биологов, цитологов, биохимиков, вирусологов, микробиологов и физиологов, инженеров-технологов, конструкторов биотехнологического оборудования. Cлайд 6 Биотехнология Растениеводство Животноводство Медицина Генная инженерия Cлайд 7 Биотехнология в растениеводстве Ученые не только создают высокоурожайные сорта растений, устойчивые к неблагоприятным факторам, но и разрабатывают биотехнологические пути защиты растений. На промышленную основу поставлен выпуск биологических средств борьбы с вредителями на основе использования их естественных врагов и паразитов, а также токсических продуктов, образуемых живыми организмами.

Важное место в повышении урожайности растений отводится биологическим удобрениям, включающим в себя различные бактерии. Так, азотобактерин обогащает почву не только азотом, но и витаминами, фитогормонами и биорегуляторами. Препарат фосфобактерин превращает сложные органические соединения фосфора в простые, легко усвояемые растениями. Все большее распространение получает использование биогумуса — высокоэффективного естественного органического удобрения.

Как показали исследования, биогумус существенно повышает плодородие почвы и ее устойчивость к водной и ветровой эрозии, быстро восстанавливает плодородие низкоплодородных участков, улучшает экологическую обстановку. Промышленное получение биогумуса освоено во многих странах Cлайд 8 Метод: культура тканей Всё шире на промышленной основе применяется метод вегетативного размножения сельскохозяйственных растений культурой тканей. Он позволяет не только быстро размножать новые перспективные сорта растений, но и получить незараженный вирусами посадочный материал. Cлайд 9 Биотехнология в животноводстве В последние годы повышается интерес к дождевым червям как к источнику животного белка для сбалансирования кормовых рационом животных, птиц, рыб, пушных зверей, а также белковой добавки, обладающей лечебно-профилактическими свойствами.

Для повышения продуктивности животных нужен полноценный корм.

Основными темами докладов Форума стали применение нанотехнологий и IT в здравоохранении и медицине, современные подходы к диагностике, лечению и реабилитации пациентов при социально значимых заболеваниях, разработка и внедрение инновационных биомедицинских технологий, профилактика онкологических заболеваний, биотехнологии в производстве продуктов питания в том числе, функциональных и специализированных и другие направления. Секция Форума «Пищевые биотехнологии и стратегии развития пищевых систем» прошла во второй день работы Форума и была организована в ФНЦ пищевых систем имени В. Горбатого РАН.

С пленарными докладами о новых разработках в области пищевых технологий, функционального и специализированного питания выступили профессор Линдси Браун из Университета Гриффита в Австралии и доцент Института пищевых наук Чжэцзянской академии сельскохозяйственных наук Кэ Кэ Чжао, Китай. Академик РАН Владимир Алексеевич Черепенин рассказал о возможности применения мощных ультракоротких электромагнитных импульсов для борьбы с онкологическими заболеваниями, в том числе с карциномой. Уже внедрённой в клиническую практику инфракрасной термографии посвятил свой доклад ведущий научный сотрудник Института радиотехники и электроники им.

Презентация - Биотехнология-наука будущего

Главное по теме «Биотехнологии» – читайте на сайте Industry expansion has followed such innovation. The global biotechnology market is currently valued at 752.8 Billion — and growing. The development of breakthrough health initiatives from biotech will. научные исследования, разработка новых.

Презентация на тему Перспективы развития биотехнологии

Предмет: Биология 11 класс Слайдов: 18 Формат Размер: 0.6 Мб Тема: Успехи современной биотехнологии. Презентация отражает основные направления, методы и перспективы развития биотехнологии как науки. Генная инженерия - Мировые площади занятые трансгенными культурами - Направления клеточной. Предмет: Биология 11 класс Слайдов: 18 Формат Размер: 0.6 Мб Тема: Успехи современной биотехнологии.

Презентация Биотехнологии

Биотехнологии Фото Пипетка, уронившая синий химикат образца на молодое растение в пробирке, концепция исследования биотехнологии.
Презентация по теме Биотехнологии доклад, проект Изобретение относится к биотехнологии и сельскохозяйственной микробиологии и касается штаммов, которые повышает урожайность пшеницы и содержание белка в зерне.
РосБиоТех | RosBioTech Отдел научной обработки литературы подготовил презентацию учебных ресурсов из электронно-библиотечных систем по дисциплине «Пищевая биотехнология».

Последние комментарии

  • Похожие презентации
  • Большой сборник презентаций в помощь школьнику.
  • 2.1. Биосинтез.
  • На Форуме «РОСБИОТЕХ-2024» представили новейшие разработки биотехнологий для сельского хозяйства
  • «Комплементарное» лекарство

Учёные впервые напечатали на 3D-принтере живые ткани человеческого мозга

Соединение клеток зародышей на ранних стадиях развитие приводит к появлению мозаичных животных — химер Получение мозаичных мышей химер Клонирование. Клон — группа генетически идентичных клеток. В 1997 году началась эра клонирования животных. Клонирование может позволить реставрировать давно погибшие виды. Воспроизвести копии выдающихся по продуктивности животныхрекордистов. Клонирование человека Клони рование англ. Объекты, полученные в результате клонирования, называются клонами.

Группа генетически идентичных организмов или клеток — клон. Может осуществляться в пределах одного вида внутривидовая гибридизация и между разными систематическими группами отдалённая гибридизация, при которой происходит объединение разных геномов. Для первого поколения гибридов часто характерен гетерозис, выражающийся в лучшей приспособляемости, большей плодовитости и жизнеспособности организмов. При отдалённой гибридизации гибриды часто стерильны.

Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.

Среди коммерческих фирм лидером в создании терапевтических нуклеиновых кислот является американская компания Ionis Pharmaceuticals, Inc. Препараты Ionis против ряда других заболеваний проходят клинические испытания. Более эффективным является ферментативное разрезание мРНК, спровоцированное связыванием терапевтического олигонуклеотида с мишенью. Этот фермент и сам представляет собой РНК с каталитическими свойствами рибозим. Чрезвычайно мощным средством подавления активности генов оказались не только антисмысловые нуклеотиды, но и двуцепочечные РНК, действующие по механизму РНК-интерференции.

Использование этого механизма открывает новые возможности для создания широкого спектра высокоэффективных нетоксичных препаратов для подавления экспрессии практически любых, в том числе вирусных, генов. Молекулы нуклеиновых кислот, избирательно связывающие определенные вещества, называются аптамерами. На их основе могут быть получены препараты, блокирующие функции любых белков: ферментов, рецепторов или регуляторов активности генов. В настоящее время получены уже тысячи самых разных аптамеров, находящих широкое применение в медицине и технике. Модификации по азотистому основанию придают таким аптамерам дополнительную «белковоподобную» функциональность, что обеспечивает высокую стабильность их комплексам с мишенями. Кроме того, это увеличивает вероятность успешного отбора сомамеров к тем соединениям, к которым подобрать обычные аптамеры не удалось.

Развитие синтетической биологии происходит на базе революционного прорыва в области олигонуклеотидного синтеза. Синтез искусственных генов стал возможным благодаря созданию высокопроизводительных синтезаторов генов, в которых использованы микро- и нанофлюидные системы. Примером развития микрочиповых технологий могут служить американская фирма LC Sciences и немецкая Febit Gmbh. Биочиповый реактор производства LC Sciences с использованием стандартных реагентов для олигонуклеотидного синтеза позволяет одновременно синтезировать 4—8 тыс. Микрочиповый реактор фирмы Febit Gmbh состоит из 8 независимых фрагментов, на каждом из которых одновременно синтезируется до 15 тыс. И на очереди множество подобных препаратов.

Этот сенсор способен «улавливать» молекулы лишь определенных белков, которые необходимо детектировать в образце. В настоящее время по этой схеме конструируются переключаемые биосенсоры к модифицированным белкам крови, служащим маркерами диабета. Новым объектом среди терапевтических нуклеиновых кислот является и сама матричная информационная РНК. При попадании в клетку мРНК действуют в ней как ее собственные. В результате клетка получает возможность производить белки, которые могут предотвратить или остановить развитие заболевания. Большая часть таких потенциальных терапевтических препаратов направлена против инфекционных вирус гриппа, вирус Зика, цитомегаловирус и др.

Белки как лекарство Огромные успехи синтетической биологии за последние годы отразились и в разработке технологий производства терапевтических белков, уже широко применяющихся в клинике. В первую очередь это относится к противоопухолевым антителам, с помощью которых стала возможной эффективная терапия целого ряда онкологических заболеваний. Сейчас появляются все новые противоопухолевые белковые препараты. С использованием методов генной инженерии был получен ряд структурных аналогов лактаптина, из которых был выбран наиболее эффективный. Испытания на лабораторных животных подтвердили безопасность препарата и его противоопухолевую и антиметастатическую активность в отношении ряда опухолей человека. Уже разработана технология получения лактаптина в субстанции и лекарственной форме, изготовлены первые экспериментальные партии препарата.

Терапевтические антитела все шире применяются и для лечения вирусных инфекций. Препарат прошел все доклинические испытания, доказав свою высокую эффективность. Оказалось, что защитные свойства искусственного антитела в сто раз выше, чем коммерческого препарата антител, получаемого из сыворотки доноров. Вторжение в наследственность Открытия последних лет расширили возможности генотерапии, которые до недавнего времени представлялась фантастикой. При «ремонте» репарации таких нарушений можно исправлять мутации, ответственные за заболевания, или вводить в терапевтических целях новые генетические элементы. Редактирование генов открывает перспективы радикального решения проблемы генетических заболеваний путем модификации генома при использовании экстракорпорального оплодотворения.

Принципиальная возможность направленного изменения генов эмбриона человека уже доказана экспериментально, и создание технологии, обеспечивающей появление на свет детей, свободных от наследственных заболеваний, задача ближайшего будущего. С помощью геномного редактирования можно не только «исправлять» гены: этот подход можно использовать для борьбы с вирусными инфекциями, не поддающимися обычной терапии.

Японские ученые под руководством профессора Синья Яманака из Университета Киото впервые выделили стволовые клетки из человеческой кожи, предварительно внедрив в них набор определенных генов. По их мнению, это может послужить альтернативой клонированию и позволит создать препараты, сравнимые с теми, что получаются при клонировании человеческих эмбрионов. Американские ученые практически одновременно получили аналогичные результаты. Но это не означает, что через несколько месяцев можно будет полностью уйти от клонирования эмбрионов и восстанавливать работоспособность организма при помощи стволовых клеток, полученных из кожи пациента. Сначала специалистам придется убедиться в том, что «кожные» столовые клетки на самом деле так многофункциональны, как кажутся, что их можно без опасений за здоровье пациента вживлять в различные органы и что они при этом будут работать. Главное опасение — как бы такие клетки не представляли риска в отношении развития рака. Методы генной инженерии остаются ещё очень сложными и дорогостоящими.

Но уже сейчас с их помощью в промышленности получают такие важные медицинские препараты, как интерферон, гормоны роста, инсулин и др. Селекция микроорганизмов является важнейшим направлением в биотехнологии. Развитие бионики позволяет эффективно применять для решения инженерных задач биологические методы, использовать в различных областях техники опыт живой природы. В мире уже зарегистрировано несколько десятков съедобных трансгенных растений. Это сорта сои, риса и сахарной свеклы, устойчивых к гербицидам; кукурузы, устойчивой к гербицидам и вредителям; картофеля, устойчивого к колорадскому жуку; кабачков, почти несодержащих косточек; помидоров, бананов и дынь с удлиненным сроком хранения; рапса и сои с измененным жирнокислотным составом; риса с повышенным содержанием витамина А. Генетически модернизированные источники могут встречаться в колбасе, сосисках, мясных консервах, пельменях, сыре, йогуртах, детском питании, кашах, шоколаде, конфетах мороженом.

Презентация к статье Перспективные направления биотехнологии

Перспективные направления биотехнологии Таким чекпойнтом для многих молодых биологов, биотехнологов, предпринимателей стали зимние школы «Современная биология и Биотехнологии будущего».
Биотехнологии - презентация (достижения) Презентация биотические факторы среды взаимоотношения между организмами.
Новое слово в биотехнологиях Смотрите онлайн видео «Презентация факультета биотехнологии и промышленной экологии» на канале «Волшебство VueJS» в хорошем качестве, опубликованное 28 ноября 2023 г. 16.
Презентация БИОТЕХНОЛОГИЯ - ЗАДАЧИ, МЕТОДЫ И ДОСТИЖЕНИЯ - Презентация скачать (19 слайдов) Биотехнология – это промышленное использование биологических процессов и систем на основе выращивания высокоэффективных форм микроорганизмов.
Биотехнологии — последние и свежие новости сегодня и за 2024 год на | Известия Генная инженерия - Мировые площади занятые трансгенными культурами - Направления клеточной.

Презентация: Биотехнология

Она рассказала, что впервые конференцию организуют два ведущих вуза по подготовке специалистов для различных отраслей биотехнологии. Презентация на тему Успехи современной биотехнологии к уроку по биологии. Discover the magic of the internet at Imgur, a community powered entertainment destination. Lift your spirits with funny jokes, trending memes, entertaining gifs, inspiring stories, viral videos, and so much.

Презентация - Биотехнология-наука будущего

Приоритетными задачами проекта являются проведение фундаментальных и прикладных исследований в области сельскохозяйственной биотехнологии, повышение эффективности селекционного процесса путем внедрения новых биотехнологических методов, обеспечение рынка Российского садоводства качественным, оздоровленным посадочным материалом перспективных сортов плодовых, ягодных и декоративных садовых культур, выход на международные рынки с конкурентоспособными Российскими сортами. В рамках данного проекта уже функционирует крупнейшая в области лаборатория клонального микроразмножения с производственной мощностью 500 тыс растений в год, где работают квалифицированные специалисты данного направления, прошедшие обучение в Мичуринском государственном аграрном университете и других профильных научных учреждениях. Следующим этапом проекта станет создание сети биотехнологических комплексов по производству безвирусного посадочного материала плодовых, ягодных и декоративных садовых культур в каждом федеральном округе нашей страны, что позволит обеспечить потребности всех федеральных округов в качественном посадочном материале сортов плодовых и ягодных культур, адаптированных к местным климатическим условиям. Одновременно будет полностью решена проблема импортозамещения. Общий объем производства составит 59 млн.

Как показали промышленные испытания, богатая белками биомасса одноклеточных организмов с высокой эффективностью усваивается сельскохозяйственными животными. Так, 1 т кормовых дрожжей позволяет сэкономить 5-7 т зерна. Долли была зачата из клетки молочной железы овцы, которой уже давно не было в живых, а ее клетки хранились в жидком азоте. Методика, с помощью которой была создана Долли, известна под названием "перенос ядра", то есть из неоплодотворенной яйцеклетки было удалено ядро, а вместо него помещено ядро из соматической клетки. В настоящее время с помощью биосинтеза получают антибиотики, ферменты, аминокислоты, гормоны. Например, гормоны раньше, как правило, получали из органов и тканей животных. Следовательно, трудно было получить необходимое количество препарата, и он был очень дорог. Так, инсулин, гормон поджелудочной железы, — основное средство лечения при сахарном диабете. Этот гормон надо вводить больным постоянно. Производство его из поджелудочной железы свиньи или крупного рогатого скота сложно и дорого. К тому же молекулы инсулина животных отличаются от молекул инсулина человека, что нередко вызывало аллергические реакции, особенно у детей. В настоящее время налажено биохимическое производство человеческого инсулина. Был получен ген, осуществляющий синтез инсулина.

Слайд 16 Субстраты для получения белка одноклеточных для разных классов микроорганизмов. Слайд 17 Слайд 18 Плазмиды Наибольшие успехи были достигнуты в области изменения генетического аппарата бактерий. Вводить новые гены в геном бактерии научились с помощью небольших кольцеобразных молекул ДНК — плазмид, присутствующих в бактериальных клетках. В плазмиды «вклеивают» необходимые гены, а затем такие гибридные плазмиды добавляют к культуре бактерий, например кишечной палочки. Некоторые из этих бактерий поглощают такие плазмиды целиком. После этого плазмида начинает работать в клетке как ген, изготавливая в клетке кишечной палочки десятки своих копий, которые обеспечивают синтез новых белков. Слайд 19 Биогеотехнология Слайд 20 Итак, какова же структура биотехнологии? Учитывая, что биотехнология активно развивается и структура её окончательно не определилась, можно говорить лишь о тех видах биотехнологии, которые существуют в настоящее время. Это клеточная биотехнология — прикладная микробиология, культуры растительных и животных клеток об этом шла речь, когда мы говорили о микробиологической промышленности, о возможностях клеточных культур, о химическом мутагенезе. Это генетическая биотехнология и молекулярная биотехнология они обеспечивают «индустрию ДНК». И наконец, это моделирование сложных биологических процессов и систем, включающее инженерную энзимологию об этом мы говорили, когда рассказывали об иммобилизованных ферментах. Слайд 21 Очевидно, что биотехнология имеет огромное будущее. И дальнейшее её развитие тесно связано с одновременным развитием всех важнейших отраслей биологической науки, исследующих живые организмы на разных уровнях их организации. Ведь как бы ни дифференцировалась биология, какие бы новые научные направления не возникали, объектом их исследования всегда будут живые организмы, представляющие собой совокупность материальных структур и разнообразнейших процессов составляющих физическое, химическое и биологическое единство.

Целями и задачами реализации проекта создания биотехнологического комплекса, является внедрение научных технологий в АПК, содействие проведению научных исследований в области биоинженерии, селекции, усилению взаимодействия науки и бизнеса, коммерциализации научных результатов путём массового производства отечественного посадочного материала высоких категорий качеств, создание новых высокотехнологичных мест и повышение экономической эффективности отрасли садоводства. Приоритетными задачами проекта являются проведение фундаментальных и прикладных исследований в области сельскохозяйственной биотехнологии, повышение эффективности селекционного процесса путем внедрения новых биотехнологических методов, обеспечение рынка Российского садоводства качественным, оздоровленным посадочным материалом перспективных сортов плодовых, ягодных и декоративных садовых культур, выход на международные рынки с конкурентоспособными Российскими сортами. В рамках данного проекта уже функционирует крупнейшая в области лаборатория клонального микроразмножения с производственной мощностью 500 тыс растений в год, где работают квалифицированные специалисты данного направления, прошедшие обучение в Мичуринском государственном аграрном университете и других профильных научных учреждениях. Следующим этапом проекта станет создание сети биотехнологических комплексов по производству безвирусного посадочного материала плодовых, ягодных и декоративных садовых культур в каждом федеральном округе нашей страны, что позволит обеспечить потребности всех федеральных округов в качественном посадочном материале сортов плодовых и ягодных культур, адаптированных к местным климатическим условиям. Одновременно будет полностью решена проблема импортозамещения.

Большой сборник презентаций в помощь школьнику.

  • Новости по тегу биотехнологии, страница 1 из 2
  • Комментарии
  • РОСБИОТЕХ-2024: инновационные биотехнологии в медицине, промышленности и сельском хозяйстве
  • Презентация Перспективы развития биотехнологии
  • Презентация программы «Клеточная и молекулярная биотехнология» — Video

Современные биотехнологии и проблемы биоэтики Выполнила студентка VI

Данная презентация знакомит слушателей с понятием биотехгологии и ее основными направлениями, такими как биомедицина, биоинженерия, нанмоедицина, биофармакология, биоинформатика, бионика, клонирование, гибридизация, биоремидиация, клонирование, генная инженерия. Автор знакомит с каждым из направлений, представляя краткий рассказ о каждом из них. Все слайды снабжены наглядными иллюстрациями по теме.

Мы попробовали себя в роли исследователей-биотехнологов, провели эксперименты и выяснили, благодаря чему бобовое дерево из старинной английской сказки смогло дорасти до небес.

Итак, цель нашего исследования: изучение влияние различных стимуляторов на развитие ростков семян гороха. Задачи исследований: изучить теоретический материал по исследуемым биостимуляторам; исследовать влияние различных стимуляторов на развитие растений. Объект исследования: семена гороха Гипотеза: стимуляторы оказывают влияние на развитие семян гороха, но в различной степени.

Учёные нашли пути преодоления перечисленных трудностей. Для этого ферменты переводят в нерастворимую форму, закрепляя их на твёрдом носителе. Такие ферменты называют иммобилизованными, а процесс закрепления —иммобилизацией ферментов. Иммобилизованный на природном или синтетическом носителе фермент не смешивается с реагирующими веществами, но катализирует реакцию между ними 6 слайд Аэробная и аэробно биологическая очистка Аэробную с участием кислорода воздуха очистку осуществляют как в естественных условиях — на полях орошения, полях фильтрации, биологических прудах и каналах, так и в искусственных условиях — в аэротенках, биофильтрах и аэрофильтрах.

При аэробной очистке «работают» бактерии, которые окисляют органические вещества и способствуют осаждению загрязняющих частиц.

Экзоскелет второго поколения компании «ЭкзоАтлет» прошел медицинскую сертификацию в России Гемагель нового поколения подходит для заживления ран Испытательно-экспертный центр мониторинга качества и безопасности пищевой продукции "ИЦ-ВНИИМП" Учёные создали альтернативный пластик из сахарного тростника и бамбука. Москва, просп. Ежегодный Форум пройдет в Москве в 17 раз. С 2022 года Форум проводится при поддержке Отделения нанотехнологий и информационных технологий, Отделения медицинских наук и Отделения сельскохозяйственных наук РАН.

Форум посвящен 300-летию Российской академии наук. Задача Форума — дать возможность для встречи и научных дискуссий специалистам в области разработки фундаментальных основ биотехнологий и специалистам, внедряющим инновационные разработки в клиническую практику, фармацевтические и пищевые производства.

Похожие презентации

  • Библиотека
  • биотехнологии - Сток картинки
  • Биотехнологии - новости и статьи | Rusbase
  • РНК-вакцины и 3D-печать органов: главные достижения биотеха. Карточки

Презентации по экологической биотехнологии

Биотехнологии сегодня — Владелец импланта Neuralink написал пост силой мысли. Презентация на тему: " Биотехнология " — Транскрипт: 1 Биотехнология дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их. Этот биотехнологический прорыв позволяет эффективно и экономически выгодно производить eCells, которые, в свою очередь, могут быть использованы для синтеза биопродуктов. Ученые утверждают, что биотехнология открывает новую эру взаимодействия человека с окружающей средой и, особенно, с живым веществом биосферы. Этот биотехнологический прорыв позволяет эффективно и экономически выгодно производить eCells, которые, в свою очередь, могут быть использованы для синтеза биопродуктов.

Похожие новости:

Оцените статью
Добавить комментарий