Новости теория струн кратко и понятно

это активная исследовательская платформа в области физики элементарных частиц, которая пытается согласовать квантовую механику и общую теорию относительности. Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. одна из наиболее восхитительных и глубоких теорий в современной теоретической физике. Главное преимущество теории струн является ее способность объединить общую теорию относительности Эйнштейна и квантовую механику. Теория струн воплощает мечту всех физиков по объединению двух, в корне противоречащих друг другу ОТО и квантовой механики, мечту, которая до конца дней не давала покоя величайшему «цыгану и бродяге» Альберту Эйнштейну.

Квантовая теория струн

теория струн имеет значительное значение для понимания ранней Вселенной и происхождения нашей вселенной. Теория струн, имеет все шансы разрешить главный спор в физике XX века – включить гравитационное взаимодействие в Стандартную модель. 20–минутное видео о теории струн. Про эту теорию впервые прочитал в журнале "Юный техник" ещё в школе. О проекте. Новости.

Теория струн. Возникновение теории, ее приложения

Почта Мой МирОдноклассникиВКонтакте Игры Знакомства Новости Поиск Облако VK Combo Все проектыВсе проекты. Не так давно физический мир облетела новость: знаменитая теория струн несовместима с существованием тёмной энергии, какой её себе представляет большинство космологов. Теория струн сочетает в себе идеи квантовой механики и теории относительности, поэтому на её основе, возможно, будет построена будущая теория квантовой гравитации. Теория струн применима к познанию строения микромира не в том смысле, что там кругом висят верёвочки, а что описание происходящих в микромире процессов математически сходно с описанием неких “струн”.

Теория суперструн кратко и понятно

После бесчисленных докладов и конференций захватывающий прорыв, на который многие когда-то надеялись, оказался дальше, чем когда-либо. Тем не менее, шквал мыслей вокруг самой идеи теории струн оставил глубокий отпечаток как в физике, так и в математике. Нравится вам это или нет а некоторым физикам, конечно, нет , теория струн никуда не денется. Теория струн переворачивает страницу стандартного описания Вселенной, заменяя все частицы материи и силы всего одним элементом: крошечными вибрирующими струнами, которые закручиваются и поворачиваются сложными способами, которые, с нашей точки зрения, выглядят как частицы. Струна определенной длины, бьющая на определенной ноте, может приобрести свойства фотона, а другая струна, свернутая и вибрирующая с другой частотой, может играть роль кварка, и так далее. В дополнение к укрощению гравитации, теория струн была привлекательна своим потенциалом для объяснения значений так называемых фундаментальных констант, таких как масса электрона.

Теория струн рассматривалась как возможная «теория всего», единая структура, которая могла бы объединить общую теорию относительности и квантовую механику, две теории, лежащие в основе современной физики. Хотя квантовая механика очень хорошо описывает поведение очень маленьких вещей, а общая теория относительности хорошо объясняет, как во Вселенной происходят очень большие вещи, они плохо сочетаются друг с другом. Некоторые ученые считают, что теория струн может разрешить противоречия между ними, преодолев одну из основных нерешенных проблем физики.

Но после того, как теория струн получила известность в конце 1960-х и 70-х годах, ее положение в среде физиков-теоретиков было шатким. После бесчисленных докладов и конференций захватывающий прорыв, на который многие когда-то надеялись, оказался дальше, чем когда-либо. Тем не менее, шквал мыслей вокруг самой идеи теории струн оставил глубокий отпечаток как в физике, так и в математике.

В число этих проблем входит, к примеру, таковая — в результате вычислений математически был новый тип частиц, которые не могут существовать в природе — тахионы, квадрат массы которых меньше нуля, а скорость перемещения превышает скорость света. Другой же важной проблемой, или скорее особенностью есть существование теории струн лишь в 10-мерном пространстве. Почему же мы воспринимаем другие измерения? Развитие Существует два типа частиц: фермионы — частицы вещества, и бозоны — переносчики взаимодействия. К примеру, фотон является бозоном, переносящим электромагнитное взаимодействие, гравитон — гравитационное, или тот же бозон Хиггса, распространяющий взаимодействие с полем Хиггса.

Оказывается, количество таких вариантов поистине огромно. Считается, что их число составляет как минимум 10100; не исключено, что их вообще бесконечное число. В результате получается удручающая картина. Каков бы ни был наш мир, всегда найдется способ свести его к суперструнной теории. Таким образом, суперструнная теория не только не противоречит современным экспериментальным данным, но и не будет противоречить никакому эксперименту в обозримом будущем. Это означает, что теория суперструн близка к тому, чтобы потерять ключевое свойство научной теории — фальсифицируемость. В течение 2005 года неоднократно высказывались предположения [4] , что прогресс в этом направлении может быть связан с включением в эту картину антропного принципа: мы существуем именно в такой Вселенной, в которой наше существование возможно. Вычислительные проблемы[ ] С математической точки зрения, ещё одна проблема состоит в том, что, как и квантовая теория поля , большая часть теории струн всё ещё формулируется пертурбативно в терминах теории возмущений. Несмотря на то, что непертурбативные методы достигли за последнее время значительного прогресса, полной непертурбативной формулировки теории до сих пор нет. Текущие исследования[ Изучение свойств чёрных дыр[ ] В 1996 г. В этой работе Строминджеру и Вафе удалось использовать теорию струн для нахождения микроскопических компонентов определенного класса чёрных дыр , а также для точного вычисления вкладов этих компонентов в энтропию. Работа была основана на применении нового метода, частично выходящего за рамки теории возмущений , которую использовали в 1980-х и в начале 1990-х гг. Результат работы в точности совпадал с предсказаниями Бекенштейна и Хокинга, сделанными более чем за двадцать лет до этого. Реальным процессам образования чёрных дыр Строминджер и Вафа противопоставили конструктивный подход. Они изменили точку зрения на образование чёрных дыр, показав, что их можно конструировать путем кропотливой сборки в один механизм точного набора бран, открытых во время второй суперструнной революции. Имея в руках все рычаги управления микроскопической конструкцией чёрной дыры , Строминджер и Вафа смогли вычислить число перестановок микроскопических компонентов чёрной дыры, при которых общие наблюдаемые характеристики, например масса и заряд , остаются неизменными. После этого они сравнили полученное число с площадью горизонта событий чёрной дыры — энтропией , предсказанной Бекенштейном и Хокингом, — и получили идеальное согласие. По крайней мере, для класса экстремальных чёрных дыр Строминджеру и Вафе удалось найти приложение теории струн для анализа микроскопических компонентов и точного вычисления соответствующей энтропии. Проблема, стоявшая перед физиками в течение четверти века, была решена. Для многих теоретиков это открытие было важным и убедительным аргументом в поддержку теории струн. Разработка теории струн до сих пор остается слишком грубой для прямого и точного сравнения с экспериментальными результатами, например, с результатами измерений масс кварка или электрона. Теория струн, тем не менее, дает первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. Даже Шелдон Глэшоу, Нобелевский лауреат по физике и убеждённый противник теории струн в 1980-е гг. Струнная космология[ ] Существует три основных пункта, в которых теория струн модифицирует стандартную космологическую модель. Во-первых, в духе современных исследований, всё более проясняющих ситуацию, из теории струн следует, что Вселенная должна иметь минимально допустимый размер. Этот вывод меняет представление о структуре Вселенной непосредственно в момент Большого взрыва , для которого в стандартной модели получается нулевой размер Вселенной. Во-вторых, понятие T-дуальности, то есть дуальности малых и больших радиусов в его тесной связи с существованием минимального размера в теории струн, имеет значение и в космологии. В-третьих, число пространственно-временных измерений в теории струн больше четырёх, поэтому космология должна описывать эволюцию всех этих измерений. Модель Бранденберга и Вафы[ ] В конце 1980-х гг. Роберт Бранденбергер и Кумрун Вафа сделали первые важные шаги к пониманию того, к каким изменениям в следствиях из стандартной космологической модели приведет использование теории струн. Они пришли к двум важным выводам. Во-первых, по мере движения назад к моменту Большого взрыва температура продолжает расти до момента, когда размеры Вселенной по всем направлениям сравняются с планковской длиной. В этот момент температура достигнет максимума и начнёт уменьшаться.

Теория суперструн кратко и понятно

А началось все с одного служащего патентного бюро который придумал теорию относительности. Через "физический вакуум" каким то невообразимым способом распространяются поля и волны... Свет почему то имеет постоянную скорость независимо от источника, наблюдателя... При этом идея того что вакуум ни хрена не пуст отрицается и даже высмеивается. И вот теперь струны...

Вернее энергия первична, а материя вторична. Десять измерений которые куда то мелко свернуты...

Знаете, чем, условно говоря, отличаются протоны в кончике вашего ногтя от пока не открытого гравитона?

Только набором крошечных струн, которые их составляют, и тем, как эти струны колеблются. Конечно, все это более чем удивительно. Еще со времен Древней Греции физики привыкли к тому, что все в этом мире состоит из чего-то вроде шаров, крошечных частиц.

И вот, не успев привыкнуть к алогичному поведению этих шаров, вытекающему из квантовой механики, им предлагается вовсе оставить парадигму и оперировать какими-то обрезками спагетти… Пятое измерение Хотя многие ученые называют теорию струн триумфом математики, некоторые проблемы у нее все же остаются — прежде всего, отсутствие какой-либо возможности в ближайшее время проверить ее экспериментально. Ни один инструмент в мире, ни существующий, ни способный появиться в перспективе, «увидеть» струны неспособен. Поэтому некоторые ученые, кстати, даже задаются вопросом: теория струн — это теория физики или философии?..

Правда, видеть струны «воочию» вовсе не обязательно. Для доказательства теории струн требуется, скорее, другое — то, что звучит как научная фантастика — подтверждение существования дополнительных измерений пространства. О чем идет речь?

Все мы привыкли к трем измерениям пространства и одному — времени. Но теория струн предсказывает наличие и других — дополнительных — измерений. Но начнем по порядку.

На самом деле, идея о существовании других измерений возникла почти сто лет назад. Пришла она в голову никому не известному тогда немецкому математику Теодору Калуца в 1919 году. Он предположил возможность наличия в нашей Вселенной еще одного измерения, которое мы не видим.

Об этой идее узнал Альберт Эйнштейн, и сначала она ему очень понравилась. Позже, однако, он засомневался в ее правильности, и задержал публикацию Калуцы на целых два года. В конечном счете, правда, статья все-таки была опубликована, а дополнительное измерение стало своеобразным увлечением гения физики.

Как известно, Эйнштейн показал, что гравитация есть не что иное, как деформация измерений пространства-времени. Калуца предположил, что электромагнетизм тоже может быть рябью. Почему же мы ее не наблюдаем?

Калуца нашел ответ на этот вопрос — рябь электромагнетизма может существовать в дополнительном, скрытом измерении. Но где оно? Ответ на этот вопрос дал шведский физик Оскар Клейн, который предположил, что пятое измерение Калуцы свернуто в миллиарды раз сильнее, чем размеры одного атома, поэтому мы и не можем его видеть.

Идея о существовании этого крошечного измерения, которое находится повсюду вокруг нас, и лежит в основе теории струн. Одна из предполагаемых форм дополнительных закрученных измерений. Внутри каждой из таких форм вибрирует и движется струна — основной компонент Вселенной.

Все они имеют очень закрученную и искривленную сложную форму. И все — невообразимо малы. Каким же образом эти крошечные измерения могут оказывать влияние на наш большой мир?

Согласно теории струн, решающее: для нее все определяет форма. Когда на саксофоне вы нажимаете разные клавиши, вы получаете и разные звуки. Это происходит потому, что при нажатии той или иной клавиши или их комбинации, вы меняете форму пространства в музыкальном инструменте, где циркулирует воздух.

Благодаря этому и рождаются разные звуки. Теория струн полагает, что дополнительные искривленные и закрученные измерения пространства проявляются похожим образом. Формы этих дополнительных измерений сложны и разнообразны, и каждое заставляет вибрировать струну, находящуюся внутри таких измерений, по-разному именно благодаря своим формам.

Ведь если предположить, например, что одна струна вибрирует внутри кувшина, а другая — внутри изогнутого почтового рожка, это будут совершенно разные вибрации. Впрочем, если верить теории струн, на деле формы дополнительных измерений выглядят куда сложнее кувшина. Как устроен мир Науке сегодня известен набор чисел, которые являются фундаментальными постоянными Вселенной.

Именно они определяют свойства и характеристики всего вокруг нас. Среди таких констант, например, заряд электрона, гравитационная постоянная, скорость света в вакууме… И если мы изменим эти числа даже в незначительное число раз — последствия будут катастрофическими. Предположим, мы увеличили силу электромагнитного взаимодействия.

Кварк самая маленькая элементарная частица вибрирует по одному шаблону, электрон — по другому. Соответственно, если собрать все элементарные частицы в один предмет, он будет связкой огромного количества таких вибраций. Это объяснение теории струн очень простыми словами, без использования терминов теории относительности и квантовой механики, на стыке которых она находится. Основные элементы теории Экспериментальных доказательств верности теории струн пока нет, но физики, работающие над ней, выделяют несколько обязательных элементов этой гипотезы: Дополнительные измерения. Чтобы «струны Вселенной», из которых могут состоять все предметы, действительно работали, измерений должно быть не меньше десяти. Суперсимметрия, под которой понимается связь между двумя классами элементарных частиц — фермионами и бозонами.

Совсем иное дело со струнами: дополнительная энергия приводит не к уменьшению, а к увеличению размера струны. Поэтому расстояние, которое меньше планковской длины, принципиально недостижимо. Струны бывают открытыми и замкнутыми.

И те и другие имеют определённые устойчивые формы колебаний — моды. Механическая аналогия: зажимая по-разному скрипичные струны, можно извлекать самые разные звуки. Каждая колебательная мода струны соответствует той или иной частице и обеспечивает ей все наблюдаемые характеристики: массу, спин, заряд и прочее. Причем не только частицы-участники, но и частицы-переносчики взаимодействий предстают «на равных» в теории струн. Абсолютно все частицы могут быть описаны через единый объект — струну.

Что такое теория струн?

20–минутное видео о теории струн. Про эту теорию впервые прочитал в журнале "Юный техник" ещё в школе. Теория струн гласит, что неделимые субатомные частицы состоят из крошечных маленьких струн, вибрирующих по определенной схеме. Теория струн в принципе может нам это объяснить, и вывести параметры элементарных частиц и их взаимодействий через фундаментальные физические константы типа скорости света или постоянной Планка. Ученые в качестве объяснения краткой сути теории струн пытались ввести понятие нулевого измерения.

Вы точно человек?

Теория струн пытается объединить четыре силы – электромагнитную, сильные и слабые ядерные взаимодействия, и гравитацию – в одну. Теория струн предполагает, что в нашей Вселенной существует гораздо больше измерений, чем четыре нам привычные: три пространственных плюс время. Что такое теория струн, какие пять основных элементов в нее входят, является ли она теорией всего, какие у нее недостатки в статье на О проекте. Новости. Теория струн взяла на вооружение старую идею Калуцы-Клейна о скрытом «дополнительном» измерении и значительно расширила ее.

Теория струн и квантовая механика

Вместо теории струн со всеми десятью пространственно-временными измерениями или знакомой нам Вселенной с четырьмя протяжёнными измерениями снова рассмотрим вселенную Садового шланга. Теория струн предполагает объединения идей квантовой механики и теории относительности, представляя элементарные частицы, составляющие атом из ультрамикроскопических волокон, называемых струнами. О чем теория струн? Самое простое и понятное объяснение.

Похожие новости:

Оцените статью
Добавить комментарий