Скорость самого быстрого гиперзвукового самолета — более 12 тыс. км/ч. Этот самолет способен преодолеть звуковой барьер без сильного грохота, возникающего, когда самолеты достигают сверхзвуковой скорости. Разработка европейского сверхзвукового самолета шла публично: макеты и концепты демонстрировали на выставках, а научные проблемы обсуждали в открытых журналах. Предполагается, что самолет Overture на сверхзвуковой скорости будет летать только над океанами, где уровень шума не беспокоит население. Компания Boom провела первый испытательный полет аппарата XB-1, прототипа нового сверхзвукового пассажирского самолета.
NASA представило бесшумный сверхзвуковой самолёт X-59 для гражданской авиации
Самолет, движущийся со сверхзвуковой скоростью, создает в окружающем воздухе ударные волны, скачки воздушного давления. РИА Новости, 21.10.2019. Спустя 12 лет серийные сверхзвуковые истребители МиГ-19 уже охотились за американскими самолетами-шпионами, а еще ни один гражданский самолет не попытался превысить скорость звука. Учитывая, что судно должно развивать сверхзвуковую скорость, разработчики оптимизировали форму самолёта, чтобы обеспечить низкий уровень шума при взлёте и посадке.
Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.
По этой причине кабина пилота находится почти в середине самолёта, что делает невозможным обзор по курсу. В этом направлении кабина даже не имеет остекления. Ориентироваться пилоту помогают внешние камеры высокого разрешения. Это серьёзно не дотягивает до крейсерских скоростей Ту-144 и «Конкордов», но всё равно более чем в два раза быстрее крейсерских скоростей современных авиалайнеров. Вечерний 3DNews Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы. Две минуты на чтение — и вы в курсе главных событий.
Экологические последствия Большинство представителей современной авиаиндустрии делают ставки на водород. Благодаря своей энергоемкости, он обгоняет электрические батареи в гонке за экологичные полеты.
Все эти изменения предназначены для того, чтобы авиация перешла на экологически чистый уровень, чего не скажешь о сверхзвуковых самолетах: из-за сжигания дополнительного топлива и увеличения максимальной тяги скорость увеличения отработавших газов возросла вдвое. У супер транспорта возникала еще одна проблема — экологический шум. Гиперзвуковой воздушный транспорт На сегодняшний день продолжается модернизацию российской и американской авиации. Державы давно конкурируют в развитии гиперзвуковых технологий. Американцы пытаются сконструировать ракеты, оружие и прямоточный воздушный двигатель. У Российской Федерации уже в наличии ракетные гиперзвуковые комплексы «Кинжал». Самый ожидаемый и новый проект в области авиации РФ — это истребитель МиГ-41.
Ему предстоит стать новейшей технологией в авиационной промышленности. Ожидается что быстрота полета будет в 4 раза выше скорости звука. В России ведется разработка сверхзвукового пассажирского самолета нового поколения. На инновационной перспективной машиной работают инженеры и ученые. Проект реализовывается при поддержке Министерства науки и высшего образования РФ. Аэродинамические характеристики будущего летательного аппарата: Низкий уровень шума при взлете и посадке. Незначительный звуковой удар во время крейсерского движения.
Гиперзвуковой авиалайнер Boeing Модель многоразового гиперзвукового летательного аппарата представила компания «Боинг». Новый дизайн имеет плоский фюзеляж, короткие крылья и двойной хвост. Двигатели находятся внутри двух отдельных обтекателей, но еще неясно какие реактивные установки будет использовать компания для этой машины. Неизвестно, что именно побудило «Боинг» именно сейчас предоставить новую концепцию. Первая презентация компании под названием «Валькирия» состоялась в 2018 г. Основное внимание компании уделяется разработке гиперзвуковых летательных аппаратов, способных выполнять задачи по нанесению ударов и разведке. Подведем итоги Сегодня сверхзвуковые пассажирские самолеты не эксплуатируются.
Гонка авиаконструкторов различных держав стала источником надежд и разочарований.
Конечно, будет слышимость большая, и если человек попадает под зону распространения сжатия воздушной массы от самолета на сверхзвуке, он получит сильный звуковой удар по перепонкам. Тело почувствует небольшую вибрацию. Потом [ударная волна] распространяется уже по-другому, уравновешивается разница давлений перед идущим фронтовым сжатием и за ним. Бьет, и даже можно захлебнуться воздушной массой, которая происходит в дыхательном аппарате, в легких, альвеолах. В кабине самолета, конечно, чуть проще ощущается. Пилот ничего этого не слышит, у нас в кабине всё абсолютно спокойно.
Источник: 161. RU — Насколько может быть сильной ударная волна? Способна ли заложить уши, заставить сработать сигнализацию машины, выбить стекла? В зависимости от высоты пролета. Обычно разрешается пилотировать на сверхзвуке — раньше так было — только на больших высотах. Когда высота более 10 тысяч метров. Тогда ударная волна проходит со звуковым эффектом небольшим, слабым раскатом грома.
А если пролететь на высоте 4 или 3 тысячи метров, не говоря уже о 300 или 200 метрах над землей, то эффект бывает такой, что могут лопаться стекла. Не просто трещинами, а полностью их может выдавить из рамы. Это раз. Второе — люди переносят это по-разному, но при попадании в эпицентр ударной волны могут даже повредиться ушные перепонки, может появиться кровавый след, могут из носа выделения быть с кровью. Есть расположенные люди к повышенному [давлению], у такого обязательно и из носа кровь потечет.
Пензенский эксперт о переходе самолета на сверхзвук: «Для населения это не страшно» фото:скрин видео Р. По его словам, такие полеты происходят на высоте более 14 тысяч метров. На самое деле это волна от сверхзвуковой скорости. Если это выполняется в соответствии с требованиями использования воздушного пространства, то ничего страшного.
Ту-144: опережая звук и весь мир
Как заявили опрошенные RT эксперты, создание сверхзвукового гражданского самолёта представляет собой чрезвычайно сложную задачу. РИА Новости, 21.10.2019. Кроме этого, оба самолета получили сложные топливные системы, которые перекачивали горючее для изменения центра тяжести при полетах на обычных и сверхзвуковых скоростях.
Почему при преодолении звукового барьера слышится хлопок?
Диапазон скоростей очень широкий — от дозвуковых и трансзвуковых режимов полёта до сверхзвуковых и гиперзвуковых, от 5 Махов до 20. Вчера появились данные о том, что отечественный сверхзвуковой пассажирский самолёт будет называться «Стриж», а сейчас приводим больше подробностей о нём. NASA и компания Lockheed Martin официально представили экспериментальный сверхзвуковой самолет X-59 Quesst. Этот экспериментальный самолет должен показать принципиальную способность пассажирского лайнера летать на сверхзвуковой скорости М = 1,42 (1510 км/ч), т. е. доказать приемлемость такого транспорта. NASA и компания Lockheed Martin официально представили экспериментальный сверхзвуковой самолет X-59 Quesst.
Видео дня: сверхзвуковой самолет нового поколения XB-1 совершил первый полет
Салон самолета Bombardier Glomal 8000 Новый Global 8000 — это «два самолета в одном» По его словам исполнительного директора Bombardier на выставке EBACE 2022, новый Global — это «два самолета в одном», обеспечивающий «все, что может предложить Global 7500», но с «уровнем производительности, которого никогда раньше не было в бизнес-авиации». Спальня самолета Bombardier 8000 Bombardier уже приступила к проверке необходимых модификаций, используя свой летающий испытательный стенд FTV5, работающий с площадки в США. Ввод в эксплуатацию Global 8000 ожидается в 2025 году, сообщает Bombardier. Global 8000 будет иметь длину 33,8 м и полезное пространство салона 16,59 м по сравнению с 14,27 м и 30,4 м у G800 соответственно. Изменения от G7500 к G8000 Чтобы превратить один Global в другой, необходимы изменения в управляющем программном обеспечении для двигателей GE Aviation Passport и доработки, позволяющие перевозить больше топлива. Бизнес-джет имеет размах крыла 104 фута 31,7 м и способен взлетать и садиться на короткой взлетно-посадочной полосе.
Согласно опубликованным данным, в гиперзвуковом самолете в качестве авиационного керосина может использоваться термостабильное топливо марки Т-6 или Т-8 В, а в качестве криогенного топлива — сжиженный природный газ или сжиженный водород. Среди авторов изобретения — заслуженный конструктор России Валерий Бендеров, который в 2012—2019 годах занимал должность директора программы — главного конструктора многофункционального летно-моделирующего комплекса ЛМК-214 , ведущий инженер-конструктор ОКБ « Туполев ». Популярное за сутки.
ПАО «Туполев» совместно с другими ведущими отечественными предприятиями, включая ЦАГИ, создаёт самолёт вместимостью порядка 30 пассажиров. Взлётная масса лайнера составит 70 тонн, скорость — 1,4—1,8 Маха. В сентябре 2018 года заместитель генерального директора по проектированию ПАО «Туполев» Валерий Солозобов сообщил, что в своих научных изысканиях по теме СГС конструкторы компании опираются на опыт разработки военных машин с крылом фиксированной и изменяемой геометрии — Ту-160 и дальнего бомбардировщика Ту-22. При этом, как утверждает Солозобов, цена СГС будет чуть выше дозвукового узкофюзеляжного двухдвигательного самолёта Ту-214. Об этом свидетельствуют предварительные результаты стоимостного проектирования, которое провели в ПАО «Туполев». В сентябре прошлого года министр промышленности и торговли России Денис Мантуров в интервью газете «Ведомости» сообщил, что ведомство намерено поддержать проект компактного сверхзвукового джета на 16—19 мест. Он рассказал, что на исследования по вопросу создания СГС в 2017—2019 годах было направлено 1,4 млрд рублей. В середине апреля 2020 года Минпромторг объявил тендер на формирование концепции сверхзвуковой гражданской машины под шифром СГС-Т1. Работы должны завершиться к 15 декабря 2021 года. Разработчик получит 213 млн в 2020 году и почти 505 млн в 2021 году. Ожидается, что эти деньги позволят нивелировать дефицит знаний и технологий в сфере гражданского сверхзвука. Значительный технический риск, а также отсутствие норм по допустимому уровню звукового удара и шума в районе аэропорта требуют развития, численной и экспериментальной отработки новых технических решений и технологий», — говорится в тендерной документации. Бесфорсажный режим Как заявили опрошенные RT эксперты, создание сверхзвукового гражданского самолёта представляет собой чрезвычайно сложную задачу.
А когда граница конуса доходит до наблюдателя — он, простым языком, в одно мгновение воспринимает весь шум, что не успел услышать за время приближения самолета — это и есть звуковой удар. На самом деле «хлопок» — не однократное явление, это фронт зоны возмущения, и он сопровождает самолет на протяжении всего полета на сверхзвуке. Однократно его воспринимает земной наблюдатель, — отмечает инженер. Также если на маршруте самолета, уже достигшего 1300 километров в час, находятся несколько наблюдателей — каждый из них услышит по хлопку в разное время, и при этом самолет вообще не будет менять скорость.
В США показали экспериментальный сверхзвуковой самолет X-59 QueSST
Звуковой удар похож на взрыв. Эксперт объяснил процесс перехода самолета на сверхзвук | 360° | Как заметили в компании, максимальная скорость XB-1 составляла не больше 440 км/ч. |
Сверхзвуковые самолеты возвращаются. Одни этого ждут, другие боятся | Сверхзвуковыми являются самолеты, способные совершать полет со скоростью, превышающей скорость звука в воздухе. |
Почему при преодолении звукового барьера слышится хлопок? | Ведущие авиационные державы мира напряженно работают над проектами новых сверхзвуковых пассажирских самолетов. |
Жители нескольких районов Подмосковья услышали звуки взрывов. Объясняем, что это было | «Новый Конкорд»: сверхзвуковой самолет с максимальной скоростью 2700 км/ч уже готов к испытаниям 1. |
Последователи «Конкорда»: когда пассажиры снова полетят быстрее звука | Гиперзвуковой полет займет диапазон высот 30–35 км, намного выше, чем у сверхзвуковых самолетов. |
Сверхзвуковые пассажирские самолёты – вчера, сегодня, завтра
X-59 будет летать со скоростью, в 1,4 раза превышающей скорость звука — примерно 1,5 тысячи километров в час. Главная особенность самолета — значительно меньшая громкость при преодолении звукового барьера. Добиться такого результата стало возможным благодаря максимально обтекаемой конструкции. В 1973 году Федеральное управление авиацией ввело запрет для летательных аппаратов невоенного назначения на сверхзвуковые полеты над сушей, а также вдоль береговой линии. Этому способствовало общественное давление, поскольку американцев беспокоили полеты сверхзвуковых самолетов и сопровождающие их громкие хлопки. Комментирует главный редактор журнала «Авиасоюз» Илья Вайсберг: — Были англо-французский самолет «Конкорд» и советские Ту-144. Обратите внимание, что такая сильная авиационная держава как США не участвовала в этом. А почему не участвовала?
От дозвука до гиперзвука Скорость звука в воздухе давно принята за некую эталонную точку отсчета для самых разных научных и практических измерений. Впервые об этой величине как о достаточно стабильной упоминал еще Аристотель. Он использовал ее для сравнения и характеристики движения тел. Первым же человеком в истории, преодолевшим звуковой барьер, стал в 1947 году американский летчик-испытатель Чарльз Йегер на экспериментальном самолете Bell Х-1. Первый советский пилот, капитан Олег Соколовский, разогнался до скорости звука годом позже — на Ла-176, также экспериментальном. Правда, сверхзвуковые полеты середины ХХ века были весьма условными по нынешним понятиям. Ла-176 достигал скорости звука лишь в пологом пикировании, а Bell Х-1 для этого и вовсе поднимался в небо не собственными силами, а с помощью самолета-носителя, дабы не потратить все топливо на взлете. Сверхзвуковым принято называть диапазон от 1 до 5 скоростей звука, ну а 5 «звуковых» скоростей и далее — это тот самый «гиперзвук», о котором сегодня так много говорят. Правда, пока он упоминается чаще всего применительно к ракетному оружию, ибо пилотируемые и беспилотные самолеты, перемещающиеся на таких скоростях, в массе своей представляет штучные тестовые модели. Наиболее характерным представителем этой категории летающих машин стоит назвать американский NASA X-43, ставший в первой половине прошлого десятилетия относительно открытой компиляцией всех аналогичных секретных военных разработок России и США, начавшихся еще в 1950-е гг. Этот небольшой беспилотник достиг почти десяти скоростей звука.
Это особенно актуально для России с её расстояниями. Для повышения транспортной доступности в нашей стране требуется сократить время полёта на дальность 8000 км до четырёх-пяти часов. Что самое сложное при разработке такого воздушного судна? А именно снижение до приемлемых уровней звукового удара при полёте со сверхзвуковой крейсерской скоростью и шума на местности в районе аэропорта на взлётно-посадочных режимах. Проведённые ранее исследования показывают, что предельно допустимой величиной перепада избыточного давления в приходящей на землю волне без учёта отражения является величина 40—45 Паскалей. Звуковой удар большей интенсивности приводит к осыпанию штукатурки, дребезжанию стёкол, негативно воздействует на физиологические функции человека. В условиях реальной атмосферы значение интенсивности звукового удара подвержено случайным отклонениям от номинала. На определённых стадиях полёта самолёт проходит через неустановившиеся режимы разгон и набор высоты, развороты , где неизбежны аномально высокие уровни удара фокусировка , намного превышающие значения для установившегося полёта в относительно спокойной атмосфере. Этот звук похож на выстрел? Основной количественной характеристикой восприятия в этом случае является громкость звукового удара, которая зависит от множества факторов: изменения избыточного давления, в том числе величины перепада и времени нарастания давления; характеристик отражающих поверхностей в помещении человек или на улице, на асфальте, или на траве и многих других. Также влияют режим полёта скорость, высота, ускорение , распределение по высоте параметров реальной атмосферы плотность, температура, влажность, направление и скорость ветра, турбулентность. Они достаточно длительное время активно обсуждаются на различных площадках, но не могут быть сформированы без наличия фактического материала по характеристикам распространения ударных волн малой интенсивности в реальной атмосфере. Такие данные могут быть получены только в ходе лётных испытаний специализированных демонстраторов технологий СГС, реализующих принципы формирования аэродинамических компоновок с низким звуковым ударом. Учреждение ООН, устанавливающее международные нормы гражданской авиации и координирующее её развитие. Это замкнутый круг? Необходимо планомерное развитие технологий до высокого уровня готовности, включая создание и испытания близких к натурным демонстраторам технологий. После подтверждения эффективности и реализуемости интегрированного комплекса технологий на таких демонстраторах и валидации расчётных методов проектирования возможна разработка первых нормативных документов. В дальнейшем разработка серийных самолётов тоже должна быть поэтапной.
Взлет — самостоятельный или с посторонней помощью? Распространена классификация гиперзвуковых летательных аппаратов, в основе которой — отнесение их к категории тех, что способны взлетать самостоятельно, либо тех, которые предполагают размещение на более мощном носителе — ракете либо грузовом самолете. Есть точка зрения, по которой к аппаратам рассматриваемого типа правомерно относить главным образом те, что способны взлетать самостоятельно либо при минимальном задействовании иных типов техники. Однако те исследователи, которые считают, что основной критерий, характеризующий гиперзвуковой самолет, — скорость, должен быть первостепенным при любой классификации. Будь то отнесение аппарата к беспилотным, управляемым, способным взлетать самостоятельно либо с помощью других машин — если соответствующий показатель достигает указанных выше значений, то значит, речь идет о гиперзвуковом самолете. Основные проблемы гиперзвуковых решений Концепциям гиперзвуковых решений — много десятилетий. На протяжении всех лет разработки соответствующего типа аппаратов мировые инженеры решают ряд существенных проблем, объективно мешающих поставить выпуск «гиперзвука» на поток — подобно организации производства турбовинтовых самолетов. Основная сложность в конструировании гиперзвуковых самолетов — создание двигателя, способного быть в достаточной мере энергоэффективным. Другая проблема — выстраивание необходимой тепловой защиты аппарата. Дело в том, что скорость гиперзвукового самолета в тех значениях, что мы рассмотрели выше, предполагает сильный нагрев корпуса за счет трения об атмосферу. Сегодня мы рассмотрим несколько образцов удачных прототипов летательных аппаратов соответствующего типа, разработчики которых смогли значительно продвинуться вперед в части успешного решения отмеченных проблем. Изучим теперь наиболее известные мировые разработки в части создания гиперзвуковых летательных аппаратов рассматриваемого типа. Самый быстрый гиперзвуковой самолет в мире, как считают некоторые эксперты, это американский Boeing X-43A. Так, в ходе тестирования данного аппарата было зафиксировано, что он достигал скорости, превышающей 11 тыс. То есть примерно в 9,6 раза быстрее скорости звука. Чем особенно примечателен гиперзвуковой самолет X-43A? Можно отметить, что рассматриваемый аппарат относится к самым экологичным. Дело в том, что используемое топливо практически не предполагает выделения вредных продуктов горения. Летательный аппарат создавался порядка 10 лет. В его разработку было вложено около 250 млн. Концептуальная новизна рассматриваемого самолета в том, что он был задуман с целью испытания новейшей технологии обеспечения работы двигательной тяги. Разработка от Orbital Science Компания Orbital Science, которая, как мы отметили выше, приняла участие в создании аппарата X-43A, успела также создать свой гиперзвуковой самолет — X-34. Его предельная скорость — более 12 тыс. Правда, в ходе практических тестов она не была достигнута — более того, не удалось достичь показателя, который показан самолетом X43-A. Рассматриваемый летательный аппарат ускоряется при задействовании ракеты «Пегас», функционирующей на твердом топливе. Машина X-34 была впервые испытана в 2001 году. Рассматриваемый самолет ощутимо больше аппарата от Boeing — его длина составляет 17,78 м, размах крыльев — 8,85 м. Максимальная высота полета гиперзвуковой машины от Orbical Science — 75 километров. Летательный аппарат от North American Еще один известный гиперзвуковой самолет — X-15, выпущенный компанией North American. Данный аппарат аналитики относят к экспериментальным. Он оснащен ракетными двигателями, что дает повод некоторым экспертам не относить его, собственно, к классу самолетов. Однако наличие ракетных двигателей позволяет аппарату, в частности, совершать суборбитальные полеты.
Новые формы, технологии и скорость: какими будут самолеты будущего
«Туполев» запатентовал гиперзвуковой самолет с комбинированным двигателем - Новости | Грохот в небе, от которого задрожали стекла и взвыли автомобильные сигнализации в Ростове и Батайске, — это следствие пролета над городами военного самолета на сверхзвуковой скорости. |
Сверхзвуковой самолёт NASA впервые взлетит в небо в 2024 году | Компания Venus Aerospace недавно представила концепт гиперзвукового самолета, который передвигается со скоростью 9 Махов (≈11 025 км/ч). |
Новый российский сверхзвуковой самолет | Сверхзвуковой самолет НАСА X-59, способный преодолеть звуковой барьер "в тишине", скоро поднимется в небо. |
Новый гиперзвуковой самолет впервые испытан в полете и почти в пять раз превысил скорость звука
Оно смогло развить необходимую скорость, продержаться в полете долгое время, успешно совершить посадку на воду — и при этом собрало все необходимые данные. О полете сообщает разработчик самолета — американская венчурная аэрокосмическая компания Stratolaunch. Аппарат под названием TA-1 предназначен для проведения испытаний на гиперзвуковых скоростях. Предполагается, что устройства этого типа смогут нести полезную нагрузку при исследованиях, выполняемых на заказ.
Летящий на сверхзвуковой скорости самолет по-прежнему шумит — но он обгоняет собственный шум, и все издаваемые звуки, всё производимое им возмущение воздуха, собирается позади самолета в конусовидную область. Сам самолет при этом находится в вершине этого конуса и словно тянет его за собой, образуя фронт ударной волны. А когда граница конуса доходит до наблюдателя — он, простым языком, в одно мгновение воспринимает весь шум, что не успел услышать за время приближения самолета — это и есть звуковой удар. На самом деле «хлопок» — не однократное явление, это фронт зоны возмущения, и он сопровождает самолет на протяжении всего полета на сверхзвуке.
Низкий уровень скоростей на верхней поверхности сверхкритических профилей приводит при околозвуковом обтекании к образованию местной сверхзвуковой зоны с меньшим ускорением потока, а также смещением замыкающего скачка уплотнения в заднем направлении. Все это уменьшает интенсивность скачка уплотнения перепада давлений на нем и снижает волновое сопротивление. В итоге на сверхкритическом профиле можно реализовать дальнейшее продвижение по скорости полета, т. Важной эксплуатационной характеристикой сверхкритических профилей второго поколения является их независимость от величины подъемной силы. На графиках распределения коэффициента давления по верхней поверхности различных профилей и зависимости коэффициента их волнового сопротивления от числа Маха показана эволюция распределения коэффициента давления и коэффициента волнового сопротивления при переходе от обычных профилей крыла к сверхкритическим. Другим направлением использования сверхкритических профилей, получившим широкое распространение в практике современного и перспективного самолетостроения, является возможность повышения относительной толщины профиля крыла при сохранении величины. Топливо, используемое во время полета, заливается в баки, расположенные в крыльях, поэтому толщина крыльев является очень важным конструктивным параметром. Использование сверхкритических профилей в компоновке стреловидных крыльев на сегодняшний день можно назвать одним из основных направлений совершенствования аэродинамики пассажирских и транспортных самолетов. Христиановича СО РАН были спроектированы серии крыловых профилей, характеризующихся максимальным критическим числом Маха полета. Характерной особенностью таких профилей является достаточно протяженный участок верхней поверхности профиля, вдоль которого поток движется со скоростью звука, т. Это позволяет сместить замыкающий скачок уплотнения на заднюю кромку крыла, в результате чего волновое сопротивление максимально понижается. Следует отметить, что задачи аэродинамического проектирования требуют комплексного подхода. Так, задачи обтекания должны решаться точно и быстро, при том что проблема оптимизации требует многократного решения этих задач для различных конфигураций. Методы оптимизации должны позволять получать решение с учетом аэродинамических и геометрических ограничений за вполне обозримое время. Эти особенности потребовали разработки новых методов. На основе вышеперечисленных требований были разработаны методы для решения уравнений течений газа, генерации вычислительной сетки, представления геометрии варьируемой границы и метод оптимизации. В ИТПМ им. Христиановича СО РАН на их основе был создан пакет прикладных программ для проектирования оптимальных крыловых профилей, удовлетворяющих заданным аэродинамическим и геометрическим ограничениям. Впервые благодаря решению прямой проблемы оптимизации, которую удалось свести к задаче нелинейного программирования при произвольных начальных условиях, были получены конфигурации дозвуковых профилей, обтекаемых с максимальным критическим числом Маха. На «горячих» крыльях В настоящее время с целью управления потоком используются новые принципы и современные технические средства, например подвод энергии в поток. Подобный подвод энергии может быть осуществлен при помощи комбинации лазерного и СВЧ-излучения. Лазерное излучение при этом инициирует незначительную, но достаточную для эффективного поглощения СВЧ-излучения, ионизацию потока. Для выяснения причин столь существенного снижения сопротивления необходимо рассмотреть как динамику процесса, так и установившийся периодический режим течения воздушного потока. На серии графиков, демонстрирующих изменение размеров сверхзвуковой зоны и интенсивности замыкающего скачка при подводе энергии, показано поле чисел Маха при обтекании симметричного профиля. Интенсивность замыкающего скачка оказывается меньше интенсивности скачка в случае, когда энергия не подводится, поскольку он формируется при меньших числах Маха. Этим обусловлено и то, что газ, проходя через скачок уплотнения, теряет меньше кинетической энергии. Тем самым обеспечивается большее значение полного давления в хвостовой части профиля, что позволяет снизить лобовое сопротивление. Подвод энергии способствует не только описанной перестройке течения, но и не зависящему от нее повышению полного давления газа p01 , за счет мгновенного повышения температуры в объеме. Оценки показывают, что требуемая мощность подводимой энергии мала по сравнению с мощностью набегающего потока. Это обстоятельство представляется чрезвычайно важным, так как гарантирует высокую эффективность подобного способа управления обтеканием профиля.
Детали оставим компетентным органам. Но благодаря этой новости стало известно, что гиперзвуковой пассажирский самолет — это не из фантастического романа, а предмет сегодняшних научных разработок. В международном проекте по созданию такого самолета Hexafly-Int участвует российский Центральный аэрогидродинамический институт им. Жуковского ЦАГИ , сотрудником которого и был наш ученый. А вот сверхзвуковой самолет нового поколения «старое» поколение — это «Конкорд» и российский ТУ-144 ученые ЦАГИ надеются создать уже буквально завтра. Его летные испытания, если финансирование позволит, предполагается начать в 2023 году. Планируемая скорость — в два с лишним раза быстрее, чем у нынешних лайнеров. Научную базу под проект будет подводить научный центр мирового уровня «Сверхзвук» консорциум из десятка ведущих российских институтов - на это выделено госфинансирование в рамках нацпроекта «Наука». Но и у России так или иначе есть огромный задел, - оценивает перспективы исполнительный директор агентства «АвиаПорт» Олег Пантелеев. Проработаны некоторые вопросы, связанные с особенностями конструкции. Как делать силовую схему, какие использовать материалы. Параллельно Центральный институт авиационного моторостроения ведет проработки по двигателю для пассажирского сверхзвукового самолета. Так значит, не фантастика, и скоро мы будем летать гораздо быстрее? Когда самолет преодолевает звуковой барьер, с земли это воспринимается как хлопок. И это тоже проблема: современные лайнеры должны быть тихими. Они уже летали и перевозили пассажиров. Вообще первый пилотируемый гиперзвуковой летательный аппарат — американский самолет-ракетоплан X-15 - появился еще аж в 60-х годах прошлого века. Что пошло не так? Тем более что в военных целях сверхзвуковые и гиперзвуковые скорости вполне себе используются.
Верхом на пуле. Почему сверхзвуковые Concorde и Ту-144 оказались не нужны авиакомпаниям
Новый гиперзвуковой самолет впервые испытан в полете и почти в пять раз превысил скорость звука. Экспериментальный сверхзвуковой самолет XB-1 от Boom Technologies впервые покорил небеса. Компания Venus Aerospace недавно представила концепт гиперзвукового самолета, который передвигается со скоростью 9 Махов (≈11 025 км/ч). Губернатор Ростовской области Василий Голубев рассказал, что звуки были вызваны переходом самолета на сверхзвуковую скорость. Сверхзвуковой самолет летит быстрее звука — на сверхзвуковой скорости.
Сверхзвук 2.0: когда появятся наследники «Конкорда» и Ту-144?
Европа категорически против сверхзвукового самолета, который не удовлетворяет 14-й главе по шуму. Гиперзвуковой полет займет диапазон высот 30–35 км, намного выше, чем у сверхзвуковых самолетов. «Новый Конкорд»: сверхзвуковой самолет с максимальной скоростью 2700 км/ч уже готов к испытаниям 1.